https://doi.org/10.31631/2073-3046-2023-22-1-13-21

Особенности гуморального иммунного ответа к SARS-CoV-2 у медицинских работников временного инфекционного госпиталя

И. Д. Решетникова*^{1,2}, Е. В. Агафонова^{1,3}, Н. М. Хакимов³, Ю. А. Тюрин^{1,3}, Н. Д. Шайхразиева⁴, В. Б. Зиатдинов^{1,4}

- ¹ФБУН «Казанский НИИ эпидемиологии и микробиологии» Роспотребнадзора
- ²ИФМиБ ФГАОУ ВО «Казанский (Приволжский) федеральный университет
- ³ ФГБОУ ВО «Казанский государственный медицинский университет»
- ⁴ Казанская государственная медицинская академия филиал ГБОУ ДПО РМАНПО Минздрава России

Резюме

Актуальность. Изучение особенностей формирования и длительности сохранения гуморального иммунного ответа на новую коронавирусную инфекцию в группе высокого риска заражения – у медицинских работников (МР) – является актуальным направлением исследований. Цель. Изучить динамику выработки специфических антител (IgM и IgG) к SARS-CoV2 у невакцинированных МР временного инфекционного госпиталя для оценки трендов индивидуального гуморального иммунного ответа на новую коронавирусную инфекцию. Материалы и методы. Проводили мониторинг выработки IgM и IgG к SARS-CoV-2 в сыворотке крови 68 невакцинированных МР ежемесячно с июля 2020 г. по июль 2021 г. методом двухстадийного прямого твердофазного ИФА. Среди наблюдаемых было 26,5% мужчин и 73,5% женщин, средний возраст составил $43,5\pm1,51$ лет, 52,9% врачей, 36,8% среднего медицинского персонала и 10,3% младшего персонала. У 69,1% участвовавших в исследовании отмечались в анамнезе клинические проявления COVID-19, среди них 42,7% перенесли инфекцию в лёгкой форме, 20,6% — в среднетяжёлой и 5,9% — в тяжёлой форме, 30,9% — бессимптомно. Результаты и обсуждение. Показано снижение среднегеометрического значения титров IgM к SARS-CoV-2 (среднемесячное снижение - 6,40%) и увеличение среднегеометрического значения титров IgG (среднемесячное увеличение 4,26%) в обследуемой когорте. Индивидуальная оценка динамики антител от дня с впервые полученным положительным результатом показала снижение среднегеометрических значений титров антител и IgM и IgG к SARS-CoV-2 (среднемесячное уменьшение -23,56% и -1,18% соответственно). Индивидуальная оценка иммунного ответа позволила выделить три группы по динамике выявления lgM: M0 – lgM в крови отсутствовали (50 \pm 5,7446%); М1 – IgM сохранялись в течение 1–2 месяцев с последующим быстрым снижением титра (16, 176 ± 3 ,7943%); М2 – IgM сохранялись в крови на протяжении трёх и более месяцев (33,824 $\pm\,$ 5,1033%). По характеру динамики IgG MP были разделены на четыре труппы. G0 – медленный тренд снижения титра IgG, нет превышения 95% верхней доверительной границы индивидуального тренда ни в одной из взятых проб (19,2 \pm 4,7%); G1 – быстрый тренд снижения титра IgG, нет превышения 95% верхней доверительной границы индивидуального тренда начиная с 3-го месяца после начала наблюдения (4,4 ± 2,5%); G2 – неравномерный тренд снижения IgG, есть превышения 95% верхней доверительной границы индивидуального тренда, начиная с 3-го месяца после начала наблюдения (69, 1 ± 5 ,6%); G3 –тренд увеличения титра иммуноглобулинов IgG (7,353 \pm 3,1651%). Выводы. Результаты серологического мониторинга свидетельствуют о формировании коллективного иммунитета в данной когорте. Наблюдение за напряжённостью индивидуального иммунного ответа к SARS-CoV-2 на протяжении года демонстрирует естественное течение инфекционного процесса и является основанием для проведения вакцинации против COVID-19. Результаты серологического мониторинга могут быть использованы для прогнозирования эпидемиологической ситуации, планирования мероприятий специфической и неспецифической профилактики COVID-19, персонализации вакци-

Ключевые слова: COVID-19, серологический мониторинг SARS-CoV-2, медицинские работники Конфликт интересов не заявлен.

Для цитирования: Решетникова И. Д., Агафонова Е. В., Хакимов Н. М. и др. Особенности гуморального иммунного ответа к SARS-CoV-2 у медицинских работников временного инфекционного госпиталя. Эпидемиология и Вакцинопрофилактика. 2023;22(1): 13-21. https://doi:10.31631/2073-3046-2023-22-1-13-21

^{*} Для переписки: Решетникова Ирина Дмитриевна, к. м. н., доцент, заместитель директора по научной работе, ФБУН «Казанский научно-исследовательский институт эпидемиологии и микробиологии» Роспотребнадзора; доцент кафедры внутренних болезней ИФМиБ ФГАОУ ВО «Казанский (Приволжский) федеральный университет», 420015, Россия, г. Казань, ул. Б. Красная, 67; 420008, Россия, г. Казань, ул. Кремлевская. 18. +7 (843) 236-67-21, факс +7 (843) 236-67-41, +7 (903) 305-18-16, reshira@mail.ru. ©Решетникова И. Д. и др.

Features of the Formation of Seroprevalence to SARS-CoV2 in the Population of the Republic of Tatarstan during the Spread of COVID-19

ID Reshetnikova*1.2, EV Agafonova1.3, NM Khakimov3, YuA Tyurin1.3, ND Shaykhrazieva4, VB Ziatdinov4.4

- ¹ Kazan Scientific Research Institute of Epidemiology and Microbiology, Kazan, Russia
- ² Kazan Federal University, Kazan, Russia
- ³ Kazan State Medical University, Kazan, Russia
- ⁴ Kazan Medical Academy, Kazan, Russia

Abstract

Relevance. It is relevant to study the features of the formation and duration of the humoral immune response to a new coronavirus infection in a high-risk group of infection - among medical workers. Aims. To study the dynamics of the levels of specific antibodies (IgM and IgG) to SARS-CoV2 in unvaccinated MRs of the temporary infectious diseases hospital to assess the trends of the individual humoral immune response to a new coronavirus infection. Materials and methods. We monitored IgM and IgG to SARS-CoV-2 in 68 unvaccinated healthcare workers monthly from July 2020 to July 2021 by two-stage direct solid-phase ELISA using the test systems «SARS-CoV-2-IgG-ELISA-BEST» and «SARS-CoV-2-IgM-ELISA-BEST», Russia. Among them, there were 26.5% men and 73.5% women, the average age was 43.5 ± 1.51 years, doctors 52.9%, paramedical personnel 36.8% and junior staff 10.3%. 69.1% had a history of clinical manifestations of COVID19, among them 42.7% had a mild infection, 20.6% had a moderate infection, and 5.9% had a severe infection, 30.9% were asymptomatic. Statistical processing were carried out using the methods of variation statistics using the Excel statistical package and the WinPepi software product (version 11.65). Results. A decrease in the geometric mean value of IgM titers to SARS-CoV-2 (average monthly decrease of 6.40%) and an increase in the geometric mean value of IgG titers (average monthly increase of 4.26%). An individual assessment of the dynamics of antibodies from the day with the first positive result showed a decrease in the geometric mean values of antibody titers and IgM and IgG to SARS-CoV-2 (monthly average decrease of -23.56% and -1.18%, respectively). An individual assessment of the immune response made it possible to distinguish three groups according to the dynamics of IgM: MO -IgM in the blood were absent (50 ± 5.7446%); M1 -IgM persisted for 1–2 months, followed by a rapid decrease in titer (16.176 ± 3.7943%); M2 – IgM remained in the blood for three or more months (33.824 ± 5.1033%). By the nature of the dynamics of IgG MR were divided into four troupes. With a downward trend in IgG titer: GO - IgG does not exceed 95% of the upper confidence limit of the individual trend in any of the samples taken (19.118 \pm 4.7686%), G1 – does not exceed 95% of the upper confidence limit of the individual trend starting from 3 months after the start observations (4.412 ± 2.4903%), G2 – there is an excess of 95% of the upper confidence limit of the individual trend starting from 3 months after the start of observation (69.118 \pm 5.6027%); G3 – with a trend of increasing IgG titer (7.353 \pm 3.1651%). **Conclusions.** The results of serological monitoring as a whole indicate the formation of herd immunity in this cohort. Monitoring the intensity of the individual immune response to SARS-CoV-2 throughout the year reflects the natural course of the infectious process and is the basis for vaccination against COVID-19. The results of serological monitoring can be used to predict the epidemiological situation, plan specific and non-specific COVID- 19, personalization of vaccination.

Keywords: COVID-19, serological monitoring of SARS-CoV-2, healthcare workers

No conflict of interest to declare.

For citation: Reshetnikova ID, Agafonova EV, TyurinYuA, et al. Features of the formation of seroprevalence to SARS-CoV2 in the population of the Republic of Tatarstan during the spread of COVID-19. Epidemiology and Vaccinal Prevention. 2023;22(1):13-21 (In Russ.). https://doi:10.31631/2073-3046-2023-22-1-13-21

Введение

С начала эпидемии новой коронавирусной инфекции COVID-19 в январе—марте 2020 г. в Китае, а в последующем — в Европе и Северной Америке сообщается о случаях внутрибольничного инфицирования SARS-CoV-2, в том числе и среди медицинских работников (МР) [1,2]. Исследования напряжённости гуморального иммунитета к вирусу SARS-CoV-2 среди МР, имеющих гораздо большую вероятность встречи с вирусом, чем население в среднем, приобретают особую важность. Об уровне серопревалентности среди работников здравоохранения в Российской Федерации в первую волну эпидемии можно судить по результатам проведения широкомасштабного проекта Роспотребнадзора

по изучению популяционного иммунитета к вирусу SARS-CoV-2 у населения Российской Федерации: в Санкт-Петербурге данный показатель составил 27,1% [3], в Ленинградской области – 18,1% [4], Саратовской области – 11,6% [5], в Тюменской области – 16,1% [6], а в Хабаровском крае – 18,9% [7], в Республике Татарстан – 35,24% [8].

Известно, что у больных COVID-19 специфические антитела появляются к различным белкам вируса: Spike белку, его доменам S1 и S2, рецепторсвязывающему домену (RBD), белку нуклеокапсида, Nsp8, ORF6-10 19 [9]. Данные о времени появления различных классов антител и длительности иммунитета после перенесенной новой коронавирусной инфекции достаточно противоречивы

^{*} For correspondence: Reshetnikova Irina D., Cand. Sci. (Med.) Deputy Head of Kazan Scientific Research Institute of Epidemiology and Microbiology; Associate Professor at the Kazan Federal University, 67, Bolshaya Krasnaya str., Kazan, Russia, 420015; 18, Kremlevskaya, Kazan, Russia, 420008. +7 (843) 236-67-21, fax: +7 (843) 236-67-41, +7 (903) 305-18-16, reshira@mail.ru. @Reshetnikova ID, et al.

[10,11]. Анализ ранее проведенных исследований известных родственных коронавирусов SARS-CoV и Mers-CoV продемонстрировал, что антитела сохраняются до 1-2 лет, а к концу третьего года 44-100% из них могут исчезать [12-14].

Актуальным остаётся вопрос о длительности сохранения гуморального иммунного ответа на COVID-19. В настоящее время установлено, что антитела к RBD и S1 являются защитными (нейтрализующими), поскольку блокируют связывание вируса АСЕ2 и проникновение вируса в клетки, для белка к нуклеокапсиду не установлено такого действия, что было показано в ранее проведённых исследованиях [15]. Изучение длительности гуморального иммунного ответа охватывает пока небольшой период наблюдения, и данные довольно противоречивы.

Рядом авторов исследований длительности гуморального иммунного ответа показано сохранение антител к Spike белку в течение 6-10 месяцев после заболевания [16-19], и менее длительное присутствие антител к нуклеокапсиду, которые являются менее стойкими [20,21]. Отечественными авторами выявлен различный уровень антител IgM к N-белку и RBD [22]. Динамика IgG-антител к цельновирионному антигену и рекомбинантным антигенам шипа достигала высоких значений на 4-5-й неделе заболевания. Уровень IgG к N-белку оставался низким в течение всего срока наблюдения до 53 недели [22]. По-видимому, противоречивые данные о динамике уровня антител после перенесённой новой коронавирусной инфекции зависят как от чувствительности используемых тест-систем, так и тяжести протекания инфекции. По данным FJ Ibarrondo с соавт. (Калифорния, США), снижение титра RBD-специфических антител после лёгкого течения COVID-19 происходит к 90-м суткам после появления симптоматики [23]. По результатам Y. Wang с соавторами (Нью-Йорк, США), при среднетяжёлом и тяжёлом течении COVID-19 IgG к S-белку и N-белку появлялись с девятого дня от появления симптомов и сохранялись 35-40 суток до окончания исследования [23]. В исследованиях А. Wajnberg с соавт. (Нью- Йорк, США) стабильный титр IgG к S-белку сохранялся до 3 месяцев [24]. Исследования, проведённые E. Bölke c соавт. (Дюссельдорф, Германия), показали, что высокий титр IgG против SARS-CoV-2 с небольшим постепенным снижением сохранялся до 120 суток после появления симптоматики [25]. По данным E. Terpos (Афины, Греция), значительное снижение титра IgG IgA наблюдалось к 74-м суткам после начала заболевания [25]. Японские ученые S. Kutsuna и соавт. (г. Токио) показали, что титр IgG, специфичных к S-белку, коррелирует с тяжестью заболевания, однако к 60-суткам заболевания отмечено снижение титра при всех вариантах течения [25].

Представляет большой интерес длительный мониторинг гуморального иммунного ответа на SARS-CoV-2, длительность сохранения антител в группах высокого риска заражения, к которым относятся MP.

Цель исследования – изучить динамику выработки специфических антител (IgM и IgG) к SARS-CoV-2 у невакцинированных MP временного инфекционного госпиталя (ВИГ) для оценки трендов индивидуального гуморального иммунного ответа на новую коронавирусную инфекцию.

Материал и методы

Исследование было одобрено локальным этическим комитетом ФБУН КНИИЭМ Роспотребнадзора (протокол № 1 от 17.06.2020). После подписания информированного согласия в исследование были включены 68 невакцинированных серопозитивных к SARS-CoV-2 MP ВИГ, переболевших новой коронавирусной инфекцией по данным регистра больных, имеющих лабораторное подтверждение (U07.1), или с диагнозом, установленным по данным компьютерной томографии (U07.2), и не имеющих документального подтверждения перенесённого заболевания, в том числе ОРВИ в осень-весну 2020 г. Информация, собранная в исследовании, включала: паспортные данные, место работы; должность; клинико-лабораторные данные (наличие симптомов ОРЗ в осень-весну 2020 г., результаты ПЦР на SARS-CoV-2, подтверждённый диагноз «COVID-19» (при наличии), дата появления симптомов ОРЗ, анализы на COVID-19 (ПЦР или ИФА); наличие хронических заболеваний; эпидемиологический анамнез (предполагаемое место заражения COVID-19, контакты с больными COVID-19 в семье или на работе, выезд из страны или в другие регионы РФ за последние 3 мес.).

Среди 68 участников исследования было 18 мужчин (26,5%) и 50 женщин (73,5%) в возрасте от 18 до 72 лет, средний возраст составил $43,5\pm1,51$ лет. Врачей было 36 (52,9%), 25 (36,8%) — среднего медицинского персонала и 7 (10,3%) — младшего персонала. У 69,1% (47 человек) отмечались в анамнезе клинические проявления COVID-19, среди них перенесли инфекцию в лёгкой форме 29 человек (42,7%), в среднетяжёлой — 14 (20,6%), тяжёлой — 4 (5,9%) и бессимптомно — 21 (30,9%).

Мониторинг содержания антител (AT) IgM и IgG к SARS-CoV-2 осуществлялся ежемесячно с июля 2020 г. по июль 2021 г. методом двухстадийного прямого твердофазного ИФА. Определение IgG к SARS-CoV-2 проводилось с использованием отечественных диагностических тест-систем с сорбированным в лунках планшета рекомбинантным полноразмерным тримеризованным гликопротеином (Spike-белок) вируса SARS-CoV-2 («SARS-CoV-2-IgG-ИФА-БЕСТ», АО «Вектор-Бест», Россия). Для детекции IgM к SARS-CoV-2 использовали отечественные тест-системы с иммобилизованными в лунках антителами к IgM человека и выявлением специфических АТ с помощью конъюгатов, содержащих антигены вируса – N-белок нуклеокапсида («SARS-CoV-2-IgM-ИФА-БЕСТ», АО «Вектор-Бест», Россия). Результаты исследований выражались

в виде коэффициента позитивности (КП), представляющего собой отношение оптической плотности образца к критической оптической плотности, высчитываемой в каждом анализе. Интерпретация результатов в зависимости от использованной тест-системы была в следующих пределах: положительными считались образцы с КП, превышающим 1,1–1,2; отрицательными – с КП менее 0,8–0,9.

Динамику титров IgM у каждого MP оценивали по рассчитанной линии тренда среднего геометрического значения титров IgM. Для построения линии тренда использовали математическую функцию, наиболее близко аппроксимирующую тренд к средней геометрической. Степень аппроксимации оценивали по критерию R2. Из двух и более функций, имевших одинаковые критерии R2, выбирали ту, которая имела наиболее простую формулу. Рассчитывались теоретические показатели титров IgM, которые образовывали линию тренда [26]. Оценка статистической значимости различий между «теоретическими» показателями и фактическими значениями титра антител проведена с помощью 95% доверительных интервалов (95% ДИ) теоретических показателей и с помощью t-критерия Стьюдента.

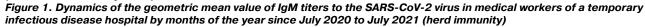
Динамику титров IgG каждого MP оценивали по индивидуальному тренду и его доверительному интервалу. Индивидуальный тренд каждого MP определяли по той же методике, что и для построения линии тренда среднего геометрическихого титров IgM.

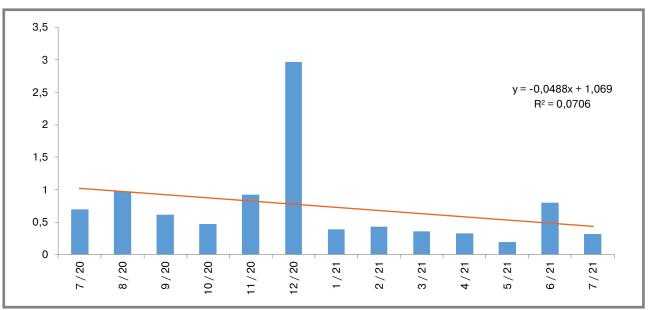
Статистическая обработка данных проведена с помощью программ Microsoft Office Excel 2010 и WinPepi (версия 11.65).

Результаты и обсуждение

Серологический мониторинг на протяжении периода наблюдения показал среднемесячное снижение титра IgM к SARS-CoV-2 на – 6,4% (рис. 1).

При этом нами отмечено параллельно этому процессу увеличение титра IgG к SARS-CoV-2 на 4,26% в целом у MP (рис. 2).

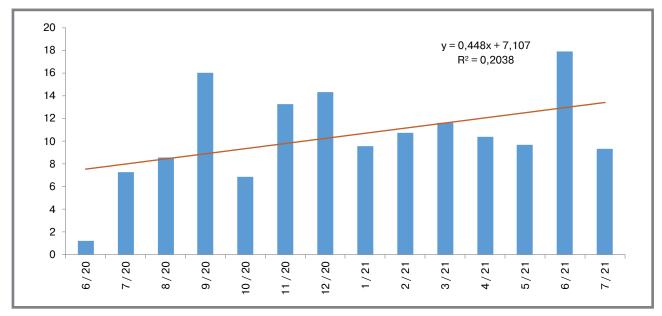

Наблюдение за напряжённостью коллективного иммунитета в изучаемой когорте MP к SARS-CoV-2, начиная с момента сероконверсии, демонстрирует увеличение среднегеометрического значения титров IgG, что можно рассматривать как результат формирования коллективного иммунитета в данной когорте и отражение развития эпидемического процесса у населения в целом, что было показано в ранее проведённых нами исследованиях по изучению уровня и структуры популяционного иммунитета к SARS-CoV-2 у населения Республики Татарстан в период второго пика распространения COVID-19 [27].


Индивидуальная оценка динамики AT у MP от дня впервые полученного положительного результата показала снижение среднегеометрического значения титров IgM (рис. 3) и IgG к SARS-CoV-2 (рис. 4).

За весь период наблюдения средний уровень IgM составил 0,870 (95% ДИ 0,6426-0,7365), оказался меньше в 12,9 раза, чем IgG - 11,258 (95% ДИ 4,2979-4,7312).

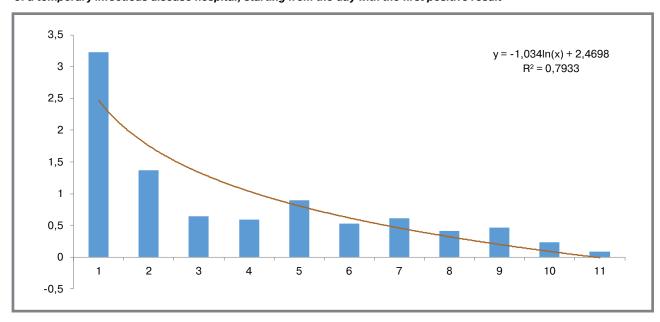
Сравнение динамики титров IgM и IgG показало, что величина среднего геометрического титров IgM в первый месяц была 3,226 (95% ДИ 1,3291–1,8189), в дальнейшем отмечено логнормальное снижение титра в течение последующих

Рисунок 1. Динамика среднегеометрического значения титров IgM к вирусу SARS-CoV-2 у медицинских работников временного инфекционного госпиталя по месяцам года с июля 2020 г. по июль 2021 г. (коллективный иммунитет)



Примечание: ось ординат – среднегеометрическое значение титров IgM к SARS-CoV-2; по оси абсцисс – месяцы 2020 г. и 2021 г. Note: The y-axis shows the geometric mean of IgM titers to the SARS-CoV-2; the abscissa shows the months of 2020 and 2021.

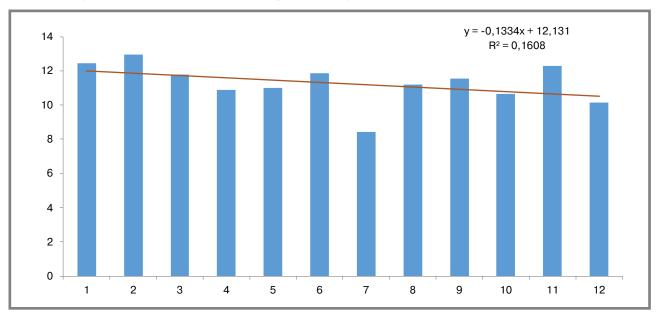
Рисунок 2. Динамика среднегеометрического значения титров IgG к вирусу SARS-CoV-2 у медицинских работников временного инфекционного госпиталя по месяцам года с июля 2020 г. по июль 2021 г. (коллективный иммунитет)


Figure 2. Dynamics of the geometric mean value of IgG titers to the SARS-CoV-2 virus in medical workers of a temporary infectious disease hospital by months of the year since July 2020 to July 2021 (herd immunity)

Примечание: ось ординат – среднегеометрическое значение титра IgG к SARS-CoV-2; по оси абсцисс – месяцы 2020 г. и 2021 г.

Note: Y-axis – geometric mean value of IgG titers to SARS-CoV-2; on the x-axis – the months of 2020 and 2021

Рисунок 3. Динамика среднегеометрического значения титров IgM к вирусу SARS-CoV-2 у медицинских работников временного инфекционного госпиталя, начиная от дня с впервые полученным положительным результатом Figure 3. Dynamics of the geometric mean value of IgM titers to the SARS-CoV-2 virus in medical workers of a temporary infectious disease hospital, starting from the day with the first positive result



Примечание: ось ординат – среднегеометрическое значение титров IgM к SARS-CoV-2; по оси абсцисс – порядковый номер точек исследования Note: Y-axis – geometric mean of IgM titers to the SARS-CoV-2; along the abscissa axis – the serial number of the study points

11 месяцев — наиболее быстрое снижение титров IgM произошло на второй месяц наблюдения, в дальнейшем снижение IgM было более равномерным. Среднее геометрическое значение титров IgG в первый месяц после их обнаружения составило

12,430 (95% ДИ 4,4231-5,5266). Снижение титров IgG оказалось линейным и равномерным на протяжении 12-месячного срока наблюдения. В целом за весь период наблюдения снижение IgM происходило более интенсивно (среднемесячно – на 23,6%)

Рисунок 4. Динамика среднегеометрического значения титра IgG к вирусу SARS-CoV-2 у медицинских работников временного инфекционного госпиталя, начиная от дня с впервые полученным положительным результатом Figure 4. Dynamics of geometric mean IgG titers to the SARS-CoV-2 virus in medical workers of a temporary infectious disease hospital, starting from the day with the first positive result

Примечание: ось ординат – среднегеометрическое значение титров IgG к SARS-CoV-2; по оси абсцисс – порядковый номер точек исследования

Note: Y-axis – geometric mean value of IgG titers to SARS-CoV-2; along the abscissa axis – the serial number of the study points

по сравнению с более медленным снижением IgG (на 1,2% в месяц).

Наблюдение за напряжённостью индивидуального иммунного ответа к SARS-CoV-2 на протяжении года, начиная с момента сероконверсии, демонстрирует уменьшение титров IgM и, а также IgG, что отражает естественное течение инфекционного процесса и является основанием для проведения вакцинации против новой коронавирусной инфекции. Необходимо поддержание достаточного уровня специфических АТ путём проведения иммунизации с целью прекращения эпидемического распространения SARS-CoV-2.

В ранее проведённых нами исследованиях гуморального иммунного ответа у МР в течение двух месяцев наблюдения отмечалось, что иммунный ответ был неоднородным, были выделены две формы формирования гуморального иммунного ответа у МР [28]:

- синхронная с параллельной элиминацией IgG и IgM – группа «повышающих» AT;
- синхронная с параллельным увеличением IgG и IgM в сроки от 6-7 недель с момента появления первых симптомов с сохранением разнонаправленных тенденций вплоть до 11-12 недели наблюдения – группа «элиминирующих» АТ. Причём группа «повышающих» АТ преобладала над группой «элиминирующих».

Оценка индивидуального иммунного ответа на новую коронавирусную инфекцию в течение годового мониторинга позволила выделить три группы MP по динамике выработки IgM:

1. MO – IgM в сыворотке крови отсутствовали (34 чел., 50 ± 5,7%);

- **2.** М1 IgM сохранялись в течение 1-2 месяцев с последующим быстрым снижением титра (11 чел., $16.2 \pm 3.8\%$);
- **3.** M2 IgM сохранялись в сыворотке крови на протяжении трёх и более месяцев (23 чел., $33.8 \pm 5.1\%$).

Группа M0 MP (IgM в крови отсутствовали) была достоверно более многочисленной в сравнении с группой M1 (p = 0,04), а также с группой M2 (p = 0,00001).

Группа M2 (IgM сохранялись в сыворотке крови на протяжении трёх и более месяцев) была более многочисленной в сравнении с группой M1 (IgM сохранялись в течение 1-2 месяцев с последующим быстрым снижением титра) (p = 0,008905724).

Анализ среднегеометрического значения титров IgM показал достоверные различия между группами (табл. 1). Титры IgM были выше в группе M2 по сравнению с группами с M0 и M1 (p = 1,05146E-53 и p = 5,04668E-12 соответственно).

Общепризнано, что антитела класса М вырабатываются организмом человека в основном на первичное антигенное раздражение, а темп и интенсивность IgM-ответа при первичной и вторичной реакции на антиген одинаковы при повторном антигенном раздражении [29]. Поэтому вызывает интерес группа М2, включающая треть МР, в которой антитела данного класса сохранялись на протяжении трёх и более месяцев. Возможно, что данная группа МР последовательно инфицировалась разными вариантами вируса SARS-CoV-2, различавшимися антигенно в локусах отличных от Spike-белка или N-белка

Таблица 1. Значение среднего геометрического титра антител в группах медицинских работников с разными типами иммунного ответа по IgM

Table 1. The values of the geometric mean titers of antibodies in groups of medical workers with different types of immune response to IgM

Тип иммунного ответа по IgM IgM type of immune response	Среднее геометрическое титра IgM (95% ДИ) Geometric mean IgM titer (95% CI)
МО	0,0673 (0,04371-0,09147)
M1	0,3727 (0,20846–0,55934)
M2	1,4394 (1,22631–1,67295)

Таблица 2. Значения средних геометрических титров антител в группах медицинских работников с разными типами иммунного ответа по IgG

Table 2. The values of geometric mean antibody titers in groups of medical workers with different types of IgG immune response

Тип иммунного ответа по IgM IgM type of immune response	Среднее геометрическое титра IgG (95% ДИ) Geometric mean IgG titer (95% CI)
G0	6,4495 (5,34156–7,75092)
G1	5,1307 (2,0981–11,13191)
G2	11,1923 (10,40903–12,02928)
G3	7,5166 (5,46192–10,22455)

нуклеокапсида. Длительное персистирование антител IgM также может быть связано с особенностями фенотипа MP.

По характеру динамики IgG MP были разделены на четыре труппы:

- **1)** GO медленный тренд снижения титра IgG, нет превышения 95% верхней доверительной границы индивидуального тренда ни в одной из взятых проб (13 чел., $19,2 \pm 4,7\%$);
- 2) G1 быстрый тренд снижения титра IgG, нет превышения 95% верхней доверительной границы индивидуального тренда начиная с 3-го месяца после начала наблюдения (3 чел., $4,4\pm2,5\%$);
- 3) G2 неравномерный тренд снижения IgG, есть превышение 95% верхней доверительной границы индивидуального тренда начиная с 3-го месяца после начала наблюдения (47 чел., $69.1 \pm 5.6\%$);
- **4)** G3 –тренд увеличения титра lgG (5 чел., 7,353 \pm 3,1651%).

Иммунный ответ в группе G2 с трендом неравномерного снижения IgG встречался у двух третей обследуемых MP. Это явление могло быть вызвано повторной экспозицией вируса SARS-CoV-2 и стимуляцией выработки IgG у MP. В этой группе MP имели более высокие титры IgG по сравнению с группой G0 (p=1,61836E-07), группой G3 (p=0,01361267) и G1 (p=0,049995729) (табл. 2).

Заключение

Результаты проведённого нами серологического мониторинга выявили разные варианты

формирования индивидуального гуморального иммунного ответа у MP по динамике выработки IgM и IgG. У каждого второго MP IgM в сыворотке крови отсутствовали, у 16% сохранялись в течение 1-2 месяцев, у каждого третьего отмечена персистенция IgM на протяжении IgM и более месяцев.

По динамике выработки IgG, начиная от первого положительного результата иммунологического обследования, выделено четыре формы иммунного ответа, три из которых с трендом снижения титра иммуноглобулинов: в 69% выявлен тренд неравномерного снижения IgG (превышение 95% верхней доверительной границы индивидуального тренда начиная с 3-го месяца после начала наблюдения). У каждого пятого МР наблюдался низкий тренд снижения IgG (IgG не превышали 95% верхней доверительной границы индивидуального тренда ни в одной из взятых проб), у 4% МР формировался быстрый тренд снижения IgG (не было превышения 95% верхней доверительной границы индивидуального тренда начиная с 3-го месяца после начала наблюдения), у 7% МР отмечен тренд увеличения титра IgG.

Полученные данные могут быть использованы для прогнозирования эпидемиологической ситуации, планирования мероприятий специфической и неспецифической профилактики COVID-19 у медицинских работников (группа повышенного риска инфицирования, персонализации вакцинации.

Необходимо продолжение исследований по комплексному изучению иммунного ответа у медицинских работников, включающее также

параметры врожденного, мукозального, клеточного иммунитета, проведение молекулярно- генетических исследований, направленных на выявление связи между параметрами иммунного ответа и клинически значимыми полиморфизмами в генах, контролирующих иммунный ответ.

Работа выполнена частично за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров.

Литература

- 1. Fei Xiang, Xiaorong Wang, Xinliang He, et al. Antibody detection and dynamic characteristics in Patients with COVID-19. Clin Infect Dis. 2020 Apr 19: ciaa461. doi: 10.1093/cid/ciaa461.
- 2. Juanjuan Zhao, Quan Yuan, Haiyan Wang, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 [published online ahead of print, 2020 Mar 28]. Clin Infect Dis. 2020, ciaa344. https://doi.org/10.1093/cid/ciaa3443.
- Попова А. Ю., Ежлова Е. Б., Мельникова А. А. и др. Популяционный иммунитет к SARS-CoV-2 среди населения Санкт-Петербурга в период эпидемии COVID-19.
 Проблемы особо опасных инфекций. 2020;(3):124–130. https://doi.org/10.21055/0370-1069-2020-3-124-130
- 4. Попова А. Ю., Ежлова Е. Б., Мельникова А. А. и др. Оценка популяционного иммунитета к SARS-CoV-2 среди населения Ленинградской области в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020;(3):114–123. https://doi.org/10.21055/0370-1069-2020-3-114-123
- 5. Попова А. Ю., Ежлова Е. Б., Мельникова А. А. и др. Характеристика популяционного иммунитета к SARS-CoV-2 у жителей Саратова и Саратовской области в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020;(4):106—116. https://doi.org/10.21055/0370-1069-2020-4-106-116
- 6. Попова А.Ю., Ежлова Е.Б., Мельникова А. А. и др. Распределение серопревалентности к SARS-CoV-2 среди жителей Тюменской области в эпидемическом периоде COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии 97 (5), 2020, 392–400 https://doi.org/10.36233/0372-9311-2020-97-5-1
- 7. Попова А. Ю., Ежлова Е. Б., Мельникова А. А. и др. Уровень серопревалентности к SARS-CoV-2 среди жителей Хабаровского края на фоне эпидемии COVID-19. Журнал микробиологии, эпидемиологии и иммунобиологии 2021; 98(1)7017https://doi.org/10.36233/0372-9311-92
- 8. Попова А. Ю., Ежлова Е. Б., Мельникова А. А. и др. Характеристика серопревалентности к SARS-CoV-2 среди населения Республики Татарстан на фоне CO-VID-19. Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97(6):518–528. DOI: https://doi.org/10.36233/0372-9311-2020-97-6-2).
- 9. Wang X, Lam JY, Wong WM, et al. Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 orf8 protein. MBio. 2020;11(5):e02431–20. doi:10.1128/mBio.02431-20
- 10. Федоров В. С., Иванова О. Н., Карпенко И. Л. и др. Иммунный ответ на новую коронавирусную инфекцию. Клиническая практика. 2021;12(1):33—40. doi: 10.17816/clinpract64677
- 10.17610/Cliniptactoady.

 11. Secchi M, Bazzigaluppi E, Brigatti C, et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J Clin Invest. 2020;130(12):6366–6378. doi: 10.1172/JCl142804
- 12. Wu LP, Wang NC, Chang YH, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13(10):1562–1564. doi: 10.3201/eid1310.070576
- 13. Choe PG, Perera R, Park WB, et al. MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015. Emerg Infect Dis. 2017;23(7):1079–1084. doi: 10.3201/eid2307.170310,
- Cao WC, Liu W, Zhang PH, et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162–1163. doi: 10.1056/ NEJMc070348.
- 15. Qiu M, Shi Y, Guo Z, et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005;7(5–6):882–889. doi: 10.1016/j.micinf.2005.02.006
- 16. Gluck V, Grobecker S, Tydykov L, et al. SARS-CoV-2-directed antibodies persist for more than six months in a cohort with mild to moderate COVID-19. Infection. 2021;1–8. doi:10.1007/s15010-021-01598-6
- 17. Lumley SF, Wei J, ODonnell D, et al. The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers. Clin Infect Dis. 2021;ciab004. doi: 10.1093/cid/ciab004]
- 18. Gerco den Hartog G, Vos ER, van den Hoogen LL, et al. Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study. Clin Infect Dis. 2021;ciab172. doi: 10.1093/cid/ciab172
- 19. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur J Immunol. 2020:50(12):2025–2040. doi: 10.1002/eii.202048970
- 20. Wang Y, Li J, Li H, et al. Persistence of SARS-CoV-2-specific antibodies in COVID-19 patients. Int Immunopharmacol.2021;90:107271. doi: 10.1016/j.intimp.2020.107271
- 21. Kumar N, Bhartiya S, Singh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021; 39(6):886–888. https://doi.org/10.1016/j.vaccine.2020.10.094
- 22. Алешкин А. В., Новикова Л. И., Бочкарева С. С. и др. Динамика антител к различным антигенам коронавируса SARS-CoV-2 у больных с подтверждённой инфекцией COVID-19. Бюллетень экспериментальной биологии и медицины. 2021.Т.171,№2.C.230–233. DOI: 10.47056/0365-9615-2021-171-2-196-199
- 23. F Javier Ibarrondo, Jennifer A Fulcher, David Goodman-Meza, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19.Engl J Med . 2020 Sep 10;383(11):1085–1087. doi: 10.1056/NEJMc2025179.Epub 2020 Jul 21.
- 24. Wajnberg A, Amanat F, Firpo A, et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. July 17, 2020 (https://www.medrxiv.org/content/10.1101/2020.07.14.20151126v1. opens in new tab).
- 25. Bölke E, Matuschek Ch, Fischer JC. Loss of Anti-SARS-CoV-2 Antibodies in Mild Covid-19. N Engl J Med. 2020 Oct 22; 383(17):1694–1695. doi: 10.1056/NEJMc2027051. Epub 2020 Sep 23. DOI: 10.1056/NEJMc2027051
- 26. Палтышев И. П. и др. Основы описательной эпидемиологии: учеб.-метод. пособие для аспирантов, обучающихся по специальности 14.02.02. Эпидемиология. Казань. МеДДоК. 2019:110.
- Садыков М. Н., Зиатдинов В. Б., Решетникова И. Д. и др. Изучение уровня и структуры популяционного иммунитета к SARS-CoV2 у населения Республики
 Татарстан в период второго пика распространения COVID-19. Эпидемиология и Вакцинопрофилактика. 2021;20(5):39–51.
 Решетникова И. Д., Тюрин Ю. А., Агафонова Е. В. и др. Изучение особенностей гуморального иммунного ответа к новой коронавирусной инфекции COVID-19
- 20. Генев пникова и. д., пория ю. А., пеционова в. в. и ор. изучение особенностное очинулного отностно к новой корониварусной инфекция и иммунитет 2021;11(5):934–942. https://doi.org/10.15789/2220-7619-SOT-1587
- 29. Супрун Е. Н. Динамика иммунного omвema. Аллергология и иммунология в педиатрии. 2014. №2 (37). Доступно на: https://cyberleninka.ru/article/n/dinamika-immunnogo-otveta (дата обращения: 14.09.2022).

References

- 1. Fei Xiang, Xiaorong Wang, Xinliang He, et al. Antibody detection and dynamic characteristics in Patients with COVID-19. Clin Infect Dis. 2020 Apr 19: ciaa461. doi: 10.1093/cid/ciaa461
- 2. Juanjuan Zhao, Quan Yuan, Haiyan Wang, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019 [published online ahead of print, 2020 Mar 28]. Clin Infect Dis. 2020, ciaa344. https://doi.org/10.1093/cid/ciaa344
- 3. Popova A.Yu., Ezhlova E.B., Melnikova A.A., et al. Population immunity to SARS-CoV-2 among the population of St. Petersburg during the COVID-19 epidemic. Problems of especially dangerous infections. 2020;(3):124–130 (In Russ). https://doi.org/10.21055/0370-1069-2020-3-124-130
- Popova A.Yu., Ezhlova E.B., Melnikova A.A., et al. Assessment of population immunity to SARS-CoV-2 among the population of the Leningrad region during the COVID-19 epidemic. Problems of especially dangerous infections. 2020;(3):114–123 (In Russ). https://doi.org/10.21055/0370-1069-2020-3-114-123
- 5. Popova A.Yu., Ezhlova E.B., Melnikova A.A., et al. Characteristics of population immunity to SARS-CoV-2 in residents of Saratov and the Saratov region during the COVID-19 epidemic. Problems of especially dangerous infections. 2020;(4):106–116 (In Russ). https://doi.org/10.21055/0370-1069-2020-4-106-116
- Popova A.Yu., Ezhlova E.B., Melnikova A.A., et al. Distribution of seroprevalence to SARS-CoV-2 among residents of the Tyumen region in the epidemic period of COVID-19.
 Journal of Microbiology, Epidemiology and Immunobiology 97(5), 2020, 392–400 (In Russ). https://doi.org/10.36233/0372-9311-2020-97-5-1
- Popova A. Yu., Ezhlova E. B., Melnikova A. A., et al. The level of seroprevalence to SARS-CoV-2 among residents of the Khabarovsk Territory against the backdrop of the CO-VID-19 epidemic. Journal of Microbiology, Epidemiology and Immunobiology 2021; 98(1)7017 (In Russ). https://doi.org/10.36233/0372-9311-92
- Popova A.Yu., Ezhlova E.B., Melnikova A.A., et al. Characterization of seroprevalence to SARS-CoV-2 among the population of the Republic of Tatarstan against the background of COVID-19. Journal of Microbiology, Epidemiology and Immunobiology. 2020; 97(6):518–528 (In Russ). DOI: https://doi.org/10.36233/0372-9311-2020-97-6-2

- 9. Wang X, Lam JY, Wong WM, et al. Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 orf8 protein. MBio. 2020;11(5):e02431–20. doi:10.1128/mBio.02431-20
- 10. Fedorov V.S., Ivanova O.N., Karpenko I.L., et al. Immune response to a new coronavirus infection. Clinical practice. 2021;12(1):33-40 (In Russ). doi:10.17816/clinpract64677
- 11. Secchi M, Bazzigaluppi E, Brigatti C, et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J Clin Invest. 2020;130(12):6366–6378. doi: 10.1172/JCl142804
- 12. Wu LP, Wang NC, Chang YH, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13(10):1562–1564. doi: 10.3201/eid1310.070576
- 13. Choe PG, Perera R, Park WB, et al. MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015. Emerg Infect Dis. 2017;23(7):1079–1084. doi: 10.3201/eid2307.170310
- 14. Cao WC, Liu W, Zhang PH, et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162–1163. doi: 10.1056/NEJMc070348.
- 15. Qiu M, Shi Y, Guo Z, et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005;7(5-6):882–889. doi: 10.1016/j.micinf.2005.02.006
- Gluck V, Grobecker S, Tydykov L, et al. SARS-CoV-2-directed antibodies persist for more than six months in a cohort with mild to moderate COVID-19. Infection. 2021;1–8. doi:10.1007/s15010-021-01598-6
- 17. Lumley SF, Wei J, O, Donnell D, et al. The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers. Clin Infect Dis. 2021;ciab004. doi: 10.1093/cid/ciab004]
- 18. Gerco den Hartog G, Vos ER, van den Hoogen LL, et al. Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study. Clin Infect Dis. 2021;ciab172. doi: 10.1093/cid/ciab172
- 19. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur J Immunol. 2020;50(12):2025–2040. doi: 10.1002/eji.202048970
- 20. Wang Y, Li J, Li H, et al. Persistence of SARS-CoV-2-specific antibodies in COVID-19 patients. Int Immunopharmacol.2021;90:107271. doi: 10.1016/j.intimp.2020.107271
- 21. Kumar N, Bhartiya S, Singh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021; 39(6):886–888. https://doi.org/10.1016/j.vaccine.2020.10.094
- 22. Aleshkin AV, Novikova LI, Bochkareva SS, et al. Dynamics of antibodies to various antigens of the SARS-CoV-2 coronavirus in patients with confirmed COVID-19 infection. 2021;171(2):230–233 (In Russ). DOI: 10.47056/0365-9615-2021-171-2-196-199
- 23. Wajnberg A, Amanat F, Firpo A, et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. July 17, 2020 (https://www.medrxiv.org/content/10.1101/2020.07.14.20151126v1. opens in new tab).
- 24. F Javier Ibarrondo, Jennifer A Fulcher, David Goodman-Meza, et al. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19.Engl J Med . 2020 Sep 10;383(11):1085–1087. doi: 10.1056/NEJMc2025179. Epub 2020 Jul 21.
- 25. Wajnberg A, Amanat F, Firpo A, et al. SARS-CoV-2 infection induces robust, neutralizing antibody responses that are stable for at least three months. July 17, 2020 (https://www.medrxiv.org/content/10.1101/2020.07.14.20151126v1. opens in new tab).
- 26. Bölke E, Matuschek Ch, Fischer JC, Loss of Anti-SARS-CoV-2 Antibodies in Mild Covid-19. N Engl J Med. 2020 Oct 22; 383(17):1694–1695. doi: 10.1056/NEJMc2027051. Epub 2020 Sep 23. DOI: 10.1056/NEJMc2027051
- 27. Paltyshev I.P. et al. Fundamentals of descriptive epidemiology: study method. manual for graduate students studying in the specialty 14.02.02. Epidemiology. Kazan. MED-Doc. 2019:110 (In Russ).
- 27. Sadykov M.N., Ziatdinov V.B., Reshetnikova I.D., et al. Study of the level and structure of population immunity to SARS-CoV2 in the population of the Republic of Tatarstan during the second peak of the spread of COVID-30. Epidemiology and Vaccinal Prevention. 2021;20(5):39–30 (In Russ). https://doi.org/10.31631/2073-3046-2021-20-5-39-51
- 28. Reshetnikova I.D., Tyurin Yu.A., Agafonova E.V., et al. Studying the characteristics of the humoral immune response to the new coronavirus infection COVID-19 among medical workers. Infection and immunity. 2021;11(5):934–942. (In Russ). https://doi.org/10.15789/2220-7619-SOT-1587
- 29. Suprun E.N. Dynamics of the immune response. Allergology and immunology in pediatrics. 2014. No. 2 (37) (In Russ). Available at: https://cyberleninka.ru/article/n/dinami-ka-immunnogo-answer (date of access: 09/14/2022).

Об авторах

- Ирина Дмитриевна Решетникова к. м. н., доцент, заместитель директора по научной работе, ФБУН «Казанский научно-исследовательский институт эпидемиологии и микробиологии» Роспотребнадзора; доцент кафедры внутренних болезней ИФМиБ ФГАОУ ВО «Казанский (Приволжский) федеральный университет». reshira@mail.ru. ORCID: 0000-0002-3584-6861.
- Елена Валентиновна Агафонова к. м. н., врач клинической лабораторной диагностики консультативно-диагностической поликлиники инфекционно- аллергических заболеваний ФБУН «Казанский научно-исследовательский институт эпидемиологии и микробиологии» Роспотребнадзора; ассистент кафедры пропедевтики детских болезней ФГБОУ ВО «Казанский государственный медицинский университет». agafono@mail. ru. ORCID: 0000-0002-4411-8786.
- Юрий Александрович Тюрин к. м. н., заведующий лабораторией иммунологии и разработки аллергенов, ведущий научный сотрудник, ФБУН «Казанский научно-исследовательский институт эпидемиологии и микробиологии» Роспотребнадзора; доцент кафедры биохимии и клинической лабораторной диагностики ФГАОУ ВО «Казанский государственный медицинский университет». tyurin.yurii@yandex.ru. ORCID: 0000-0002-2536-3604.
- Нияз Маратович Хакимов к. м. н., доцент кафедры эпидемиологии и доказательной медицины ФГБОУ ВО «Казанский государственный медицинский университет». hakimniaz@gmail.com. ORCID: 0000-0001-7895-0112
- Наталья Дмитриевна Шайхразиева к. м. н., доцент кафедры эпидемиологии и дезинфектологии, «Казанская государственная медицинская академия - филиал ГБОУ ДПО РМАНПО Минздрава России». epid-gkb7@ mail.ru. ORCID: 0000-0002-2241-3110.
- Васил Билалович Зиатдинов д. м. н., директор ФБУН «Казанский научно-исследовательский институт эпидемиологии и микробиологии» Роспотребнадзора. kniem@mail.ru. ORCID: 0000-0001-8029-6515.

Поступила: 19.09.2022. Принята к печати: 09.12.2022.

Контент доступен под лицензией СС ВУ 4.0.

About the Authors

- Irina D. Reshetnikova Cand. Sci. (Med.), Deputy Head of Kazan Scientific Research Institute of Epidemiology and Microbiology; Associate Professor at the Kazan Federal University, Kazan, Russia. reshira@mail.ru. ORCID: 0000-0002-3584-6861.
- Elena V. Agafonova Cand. Sci. (Med.), laboratory diagnostics doctor of Kazan Scientific Research Institute of Epidemiology and Microbiology; assistant Department of Propedeutics of Childhood Diseases Kazan State Medical University of the Ministry of Health of Russia. agafono@mail.ru. ORCID: 0000-0002-4411-8786.
- Yuriy A. Tyurin Cand. Sci. (Med.), Head of immunology laboratory of Kazan Scientific Research Institute of Epidemiology and Microbiology; Associate Professor at the at the Department of Biochemistry and Clinical Laboratory Diagnostics Kazan State Medical University of the Ministry of Health of Russia. tyurin.yurii@yandex.ru. ORCID: 0000-0002-2536-3604.
- Niyaz M. Khakimov Cand. Sci. (Med.), Associate Professor at the Department of Epidemiology and Evidence-Based Medicine Kazan State Medical University of the Ministry of Health of Russia. hakimniaz@gmail.com. ORCID: 0000-0001-7895-0012.
- Natalya D. Shaykhrazieva Cand. Sci. (Med.), Associate Professor at the Department of Epidemiology and Disinfectology of Kazan State Medical Academy of the Ministry of Health of Russia. epid-gkb7@mail.ru. ORCID: 0000-0002-2241-3110
- Vasil B. Ziatdinov Dr. Sci. (Med.), Head of Kazan Scientific Research Institute of Epidemiology and Microbiology. kniem@mail.ru. ORCID: 0000-0001-8029-6515.

Received: 19.09.2022. Accepted: 09.12.2022.

Creative Commons Attribution CC BY 4.0.

. 22,

, No 1