https://doi.org/10.31631/2073-3046-2023-22-6-44-53

Подход к выбору врачами реабилитационных мероприятий для пациентов, перенесших Covid-19

К. С. Ломоносов*

ФГАОУ ВО «Первый Московский государственный медицинский университет имени И. М. Сеченова» Минздрав Росси (Сеченовский Университет), Москва

Резюме

Актуальность. По данным ВОЗ, в мире с января 2020 г. по март 2023 г. число переболевших COVID-19 составило более 676 млн человек. Очевидно, что внушительное количество пациентов с последствиями COVID-19 будут нуждаться в медицинской реабилитации. Рациональный выбор реабилитационных мер важен как в медицинском, так и в экономическом аспектах, Цель. Изучить подход к выбору врачами реабилитационных мероприятий для пациентов, перенесших COVID-19. Материалы и методы. Проведен анализ 1832 историй болезни пациентов, находившихся в 2020–2022 гг. на лечении в одном из временных ковидных госпиталей Москвы. Статистический анализ проводился с использованием программы StatTech v. 3.1.3 (разработчик ООО «Статтех», Россия). Прогностические модели, моделирующие выбор врачами каждого из реабилитационных мероприятий, представленных в выписных эпикризах, разрабатывались с помощью метода бинарной логистической регрессии. Результаты и обсуждения. Врачи назначали пациентам реабилитационные мероприятия, как требующие, так и не требующие консультации узкого специалиста: дыхательную гимнастику - 69,2% пациентов, физические упражнения 75,7%; консультации: пульмонолога – 61,5% пациентов, эндокринолога – 19,9%, кардиолога – 34%. Консультация кардиолога достоверно чаще назначалась пациентам мужского пола, при наличии у них ожирения, а также сердечно-сосудистой патологии в анамнезе. Число консультаций кардиолога увеличивалось в 6 раз при наличии в анамнезе сердечно-сосудистых заболеваний или атеросклероза и в 10 раз - при наличии обеих патологий одновременно. Если больной COVID-19 страдал одышкой или компьютерная томография показывала поражение легких, то вероятность назначения консультации пульмонолога была достоверно выше и увеличивалась в 3 раза при бронхиальной астме в анамнезе. Отсутствие сахарного диабета снижает в 11 раз вероятность выбора консультации эндокринолога. Выводы. Анализ предикторов статистически значимых регрессионных моделей показал, что при принятии решения о назначении реабилитационных мероприятий или консультации при выписке пациента из стационара врачи чаще опираются на патологии, уже имевшиеся у пациентов до заболевания COVID-19, без учета возникновения возможной патологии после перенесенной болезни. Поэтому в настоящее время необходимым является выстраивание четкого алгоритма выбора реабилитационных мер и разработка минимального стандарта реабилитационной помощи всем пациентам, перенесшим COVID-19 с учетом патологических процессов, происходящих во время заболевания, и наиболее поражаемых органов мишеней, то есть с учетом степени повреждения легочной ткани, сердца, сосудов и других тканей и органов.

Ключевые слова: COVID-19, реабилитация, постковидный синдром, дыхательная гимнастика, физические нагрузки, логистическая регрессия

Конфликт интересов не заявлен.

Для цитирования: Ломоносов К. С. Подход к выбору врачами реабилитационных мероприятий для пациентов, перенесших Covid-19. Эпидемиология и Вакцинопрофилактика. 2023;22(6):44-53. https://doi:10.31631/2073-3046-2023-22-6-44-53

Doctors' Choice of Rehabilitation Measures for Patients Who Have Suffered Covid-19

KS Lomonosov**

Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia

Abstract

Relevance. According to WHO, the number of patients with a new coronavirus infection amounted to more than 676 million people for the period from January 2020 to January 2023. It is obvious that the consequences of COVID-19 will prevail in medical practice in the coming years, so medical rehabilitation should be the focus of attention when providing medical care to patients with coronavirus infection. **Aims.** To investigate the approach to physicians' selection of rehabilitation interventions for patients who have undergone Covid-19. **Materials and methods.** The analysis of 1832 case histories of patients of one of the temporary covid hospitals in Moscow, who are being treated in the hospital in 2020–2022, was carried out. Statistical analysis was carried out using

^{*} Для переписки: Ломоносов Кирилл Сергеевич, аспирант, ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), 143435, Москва, Большая Пироговская ул., 2c2. +7 (925) 569-93-60, Iomonosov_k_s@student.sechenov.ru. @ Ломоносов К. С. ** For correspondence: Lomonosov Kirill S., graduate student, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 2/2, Bolshaya Pirogovskaya, Moscow, 143435, Russia. +7 (925) 569-93-60, Iomonosov_k_s@student.sechenov.ru. @Lomonosov KS.

the StatTech v. 3.1.3 program (developed by Stattech LLC, Russia). Predictive models characterizing adherence to rehabilitation measures were developed using the logistic regression method. **Results and discussions.** The analysis of predictors of statistically significant regression models showed that when deciding on the appointment of rehabilitation measures or additional consultation when a patient is discharged from the hospital, doctors rely on pathologies already present in patients before COVID-19 disease, without taking into account the occurrence of possible pathology after a new coronavirus infection in any organ system. For example, the appointment of a cardiologist's consultation increases 6 times in the presence of a history of cardiovascular diseases or atherosclerosis and 10 times in the presence of cardiovascular diseases and atherosclerosis at the same time. The presence of bronchial asthma increased the probability of consulting a pulmonologist by almost 3 times, and in the absence of diabetes mellitus, the probability of getting additional advice from an endocrinologist decreased by 11 times. **Conclusions.** An individual rehabilitation plan should take into account the severity of the COVID-19 disease, the degree of damage to the lung tissue, heart, blood vessels and other organs. The regression models can be used for economic analysis in order to identify the need for working hours and the number of medical workers necessary to ensure the optimal volume and effectiveness of rehabilitation measures for patients who have suffered a new coronavirus infection.

Keywords: COVID-19, rehabilitation, post-covid syndrome, respiratory gymnastics, physical activity, logistic regression No conflict of interest to declare.

For citation: Lomonosov KS. Doctors' Choice of Rehabilitation Measures for Patients Who Have Suffered Covid-19. Epidemiology and Vaccinal Prevention. 2023;22(6):44-53 (In Russ.). https://doi:10.31631/2073-3046-2023-22-6-44-53

Введение

По данным ВОЗ, число пациентов, переболевших COVID-19 с января 2020 г. до марта 2023 г. составило более 676 млн человек [1]. Очевидно, что внушительное количество пациентов с последствиями COVID-19 будут нуждаться в медицинской реабилитации. Поэтому в настоящее время необходимым является выстраивание четкого алгоритма реабилитационной помощи пациентам, перенесшим COVID-19, с учетом патологических процессов, развившихся в процессе болезни и уже имевщихся

Чаще всего течение COVID-19 делят на три основных периода: острый COVID-19 (до 4 недель), пост-острый COVID-19 (от 4 до 12 недель), пост-COVID (от 12 недель до 6 месяцев) [2]. Если в начале пандемии внимание медиков было сосредоточено на острой фазе, то по прошествии времени стало появляться все больше информации о том, что клинические проявления могут или сохраняться более 6 месяцев с момента перенесенного заболевания, или возникать как отдаленные осложнения в течение нескольких недель после клинического выздоровления [3,4]. В настоящее время пост-COVID, характеризующийся развитием отдаленных последствий, которые могут носить самый разнообразный, в том числе мультисистемный характер, называют постковидным синдромом. При этом следует отметить, что постковидный синдром может проявляться не только у пациентов, перенесших COVID-19 в тяжелой форме [5,6].

Существуют исследования, в которых изучались симптомы, наиболее часто встречающиеся в рамках постковидного синдрома. В одном из этих исследований было установлено, что среди госпитализированных пациентов спустя 2 месяца после начала заболевания у 53% госпитализированных появлялись жалобы на усталость, у 43% — одышка и у 22% — боль в груди. По данным S.J. Halpin

и соавт., через 4–8 недель от начала заболевания самыми распространенными были жалобы на повышенную утомляемость (72%), одышку (65,6%) и эмоциональные нарушения (46,9%) [7].

Также большое значение имеет коморбидность, присущая многим пациентам. У пациента, страдающего артериальной гипертензией, воспалительный процесс протекает тяжелее, а также повышается риск летального исхода от COVID-19 по сравнению с пациентами без гипертензии [8]. Ко всему прочему, имеющиеся в анамнезе пациентов хронические заболевания и возникшие симптомы постковидного синдрома могут иметь общие факторы риска (пожилой возраст, сахарный диабет, артериальная гипертензия, курение, ожирение и др.), в связи с чем установить связь между коронавирусной инфекцией и симптомами, возникающими после острой фазы заболевания, представляется затруднительным.

При анализе научной литературы, касающейся медицинской реабилитации при COVID-19, а также с учетом временных методических рекомендаций Минздрава России «Медицинская реабилитация при новой коронавирусной инфекции (COVID-19)» нами было обращено внимание, что к медицинской реабилитации относят респираторную поддержку, респираторную и кардиологическую реабилитации (при наличии поражения дыхательной и сердечнососудистой систем) [11]. В методических рекомендациях указано, что в программах медицинской реабилитации больных, перенесших COVID-19, важно учитывать и внелегочные поражения, которые могут замедлить темпы функционального восстановления больного. Для разработки программы реабилитационных мероприятий необходимо привлекать профильных специалистов, а значит, при выписке из стационара пациентов необходимо направлять на консультации врачей-специалистов. Пациенты, перенесшие COVID-19, нуждаются

в комплексном обследовании для планирования индивидуальной программы медицинской реабилитации и оценки безопасности предполагаемых реабилитационных мер. Также следует отметить, что наличие назначения консультации в выписном эпикризе пациента является аргументом для обращения пациента к профильному специалисту.

Несмотря на то, что у пациентов наиболее часто встречаются проблемы с дыхательной системой (до 90% всех осложнений), клиника других патологических изменений весьма разнообразна, и они касаются функции многих органов и систем. Так, в 75% случаев COVID-19 отмечается поражение нервной системы (синдром хронической усталости, бессонница, тревожные и депрессивные состояния) и сердечно-сосудистой системы (инфаркт, аритмия, сердечная недостаточность, тромбоз и эмболия) [9,10]. Реже страдают иммунная система, костный мозг и кровь (до 65% случаев), еще реже – опорно-двигательный аппарат (12–22%).

При большом числе людей, страдающих постковидным синдромом, очень важен четкий алгоритм, критерии выбора реабилитационных мероприятий, направленных как на предотвращение развития возможных последствий COVID-19, так и на лечение постковидного синдрома. Создание такого алгоритма позволит, кроме всего, оценить объем работы и количестве медицинских работников, необходимых для реабилитации пациентов, Для создания алгоритма необходимо оценить существующий выбор реабилитационных мер.

Цель – изучить подход к выбору врачами реабилитационных мероприятий для пациентов, перенесших COVID-19.

Материалы и методы

Проведен анализ 1832 историй болезни пациентов, находившихся в 2020-2022 гг. на лечении в одном из временных ковидных госпиталей Москвы. Статистический анализ проводился с использованием программы StatTech v. 3.1.3 (разработчик ООО «Статтех», Россия). Медиана возраста пациента составила 69 лет (Q1-Q3 = 57-79, min 18 лет, тах 99 лет), из них 40,7% пациентов были мужского пола (n = 745), 283 пациента (15,4%) относились к работающему населению, 1549 (84,6%) пациентов на момент госпитализации не были трудоустроены. Количественные официально показатели оценивались на соответствие нормальному распределению с помощью критерия Шапиро-Уилка (при числе исследуемых менее 50) или критерия Колмогорова-Смирнова (при числе исследуемых более 50). В случае отсутствия нормального распределения количественные данные описывались с помощью медианы (Ме) и нижнего и верхнего квартилей (Q1-Q3). Сравнение двух групп при нормальном распределении, выполнялось с помощью t-критерия Стьюдента, при ненормальном – U-критерия Манна-Уитни. Сравнение трех и более групп по количественному показателю, распределение которого отличалось от нормального, выполнялось с помощью критерия Краскела—Уоллиса. Сравнение процентных долей при анализе четырехпольных и многопольных таблиц сопряженности выполнялось с помощью критерия χ^2 Пирсона (при значениях ожидаемого явления более 10).

Построение прогностических моделей, характеризующих мотивацию выбора реабилитационных мероприятий, выполнялось с помощью метода бинарной логистической регрессии. В ходе логистического анализа мы оценивали влияние независимых переменных, являющихся характеристиками состояния здоровья пациентов (наличие кашля или одышки, повышение температуры и др.) и сопутствующих патологий в анамнезе на вероятность назначения после выздоровления и на моменте выписки пациентов из стационара таких реабилитационных мероприятий, как дыхательная гимнастика, физические упражнения, мониторинг уровня глюкозы и специализированная диета, а также вероятность назначения консультаций профильных специалистов для разработки индивидуальной программы реабилитационных мероприятий. В статье представлены только статистически значимые модели. Мерой определенности, указывающей на ту часть дисперсии, которая может быть объяснена с помощью логистической регрессии, служил коэффициент R2 Найджелкерка.

Результаты

На момент госпитализации положительный тест-ПЦР COVID-19 был у 1601 пациента (87,4%), у остальных пациентов тест показал отрицательный результат. Тяжесть течения болезни определялась по результатам компьютерной томографии легких, у половины (44,9%) пациентов выявлена степень КТ-2, КТ-1 – у 29,7%, КТ-3 – у 18,8%, КТ-4 – у 5,5%. Срок нахождения большинства пациентов (70,8%) на лечении в стационаре составлял до 2 недель. Из 1832 пациентов, выздоровело 1637, переведены в другие медицинские организации 49 пациентов, у 146 пациентов COVID-19 закончился летальным исходом.

Далее нами была проведена оценка наличия у пациентов в анамнезе хронических патологий. Наибольший вклад в коморбидный фон вносят заболевания сердечно-сосудистой системы, а именно артериальная гипертензия IV степени (31,2%), 111 степени (20,3%), ишемическая болезнь сердца (18,2%), атеросклероз (17,9%), гипертоническая болезнь II стадии (17,5%). На втором месте по частоте встречаемости идут заболевания эндокринной системы: ожирение 1-й стадии (7,7%), сахарный диабет 2-го типа (16,3%). Также у части пациентов были выявлены заболевания органов дыхательной системы: бронхиальная астма (4,9%) и хроническая обструктивная болезнь легких (4,2%).

При анализе выписных эпикризов нами была проведена оценка содержания в них рекомендаций

о реабилитационных мероприятиях и частоты назначения консультаций профильных специалистов (табл. 1). При оценке частоты назначения консультаций при выписке после выздоровления получили направления к врачу-пульмонологу 61,5% пациентов, к эндокринологу – 19,9%, к кардиологу – 34%. Контроль уровня глюкозы в крови был назначен 23,2% и специальная диета – 55% пациентов. Обращает на себя внимание, что чаще всего врачи назначают пациентам реабилитационные меры, которые не требуют финансирования: дыхательную гимнастику (69,2%, или 1137 пациентов) и физические упражнения (75,7%, или 1240 пациентов).

Полученные результаты отражают резюмирующий тезис временных методических рекомендаций по реабилитации после COVID-19, согласно которым нормализация паттерна дыхания, физической активности и стабильной работы остальных органов и систем является приоритетной задачей реабилитации после перенесенной COVID-19 [11]. Отказ от респираторной реабилитации может привести перенесшего коронавирусную инфекцию к усугублению последствий повреждения легочной ткани, вызванного вирусом. Немаловажную роль

играет также физическая реабилитация больных, однако эксперты советуют с осторожностью подходить к выбору интенсивности и объема дыхательных и физических упражнений, в особенности в начале реабилитации. У больных из группы риска, с тяжелой формой COVID-19 или массивным повреждением легких имеется тенденция к падению сатурации и ухудшению состояния даже при малых физических нагрузках. Поэтому физические занятия проводятся под контролем специалиста по лечебной физкультуре и реабилитационной медицине, исходно в щадящем режиме с постепенным повышением их интенсивности.

Далее нами был проведен сравнительный анализ того, как состояние здоровья пациента соотносится с вероятностью назначения при выписке консультации профильного специалиста (табл. 2). Для анализа мы выбрали специалистов по наиболее распространенным патологиям, выявляемым у пациентов, в том числе в постковидном периоде.

Обращает на себя внимание факт, что при принятии решения о назначении консультации при выписке пациента из стационара врачи опираются на патологии, уже имеющиеся у пациентов

Таблица 1. Анализ реабилитационных мероприятий, внесенных в эпикриз пациента Table 1. Analysis of the content of rehabilitation measures in patients, epicrisis

Реабилитационные мероприятия Rehabilitation measures	Категории Categories	%	Абс. Abs	95% ДИ 95% CL
Дыхательная гимнастика	Да Yes	69,2	1137	66,9–71,5
breathing exercises	Нет No	30,8	505	28,5-33,1
Физические упражнения	Да Yes	75,7	1240	73,6–77,8
Physical activity	Нет No	24,3	397	22,2–26,4
Мониторинг уровня глюкозы крови	Да Yes	23,2	379	21,1–25,3
Blood glucose monitoring	Нет No	76,8	1258	74,7–78,9
Консультация эндокринолога	Да Yes	19,9	326	18,0-21,9
Endocrinology consultation	Нет No	80,1	1311	78,1–82,0
Консультация пульмонолога Pulmonology consultation	Да Yes	61,5	1007	59,1-63,9
	Нет No	38,5	630	36,1–40,9
Консультация	Да Yes	34	556	31,7–36,3
кардиолога Cardiology consultation	Нет No	66	1081	63,7–68,3
Специальные диеты	Да Yes	55	901	52,6-57,5
Special diet	Нет No	45	736	42,5–47,4

Таблица 2. Вероятность назначения консультации врача-специалиста в зависимости от состояния здоровья пациента при выписке из стационара (абсолютные значения (%))
Table 2. Comparative analysis of the characteristics of patients who are more likely to contribute to the appointment

of an additional consultation with narrow specialists at discharge

Показатель Indicator	Категории	Кардиолог Cardiologist			Пульмонолог Pulmonologist		
	Categories	Да Yes	Нет No	р	Да Yes	Нет No	р
Пол Gender	Женский Female	308 (55,4)	672 (62,2)		593 (58,9)	387 (61,4)	< 0,308
	Мужской Male	248 (44,6)	409 (37,8)	< 0,008*	414 (41,1)	243 (38,6)	
	Да Yes	481 (86,5)	939 (86,9)		898 (89,2)	522 (82,9)	< 0,001*
Повышение температуры Fever	Нет No	66 (11,9)	123 (11,4)	< 0,94	91 (9,0)	98 (15,6)	
	Нет данных No data available	9 (1,6)	19 (1,8)		18 (1,8)	10 (1,6)	
Ишемическая болезнь	Да Yes	180 (32,4)	109 (10,1)	¢ 0 004†	168 (16,7)	121 (19,2)	< 0,193
сердца Coronary disease	Нет No	376 (67,6)	972 (89,9)	< 0,001*	839 (83,3)	509 (80,8)	
	1 стадии 1 stages	8 (1,4)	22 (2,0)	< 0,001*	17 (1,7)	13 (2,1)	< 0,005*
Гипертоническая	2 стадии 2 stages	119 (21,4)	171 (15,8)		157 (15,6)	133 (21,1)	
болезнь Hypertension	3 стадии 3 stages	129 (23,2)	132 (12,2)		151 (15,0)	110 (17,5)	
	Нет No	300 (54,0)	756 (69,9)		682 (67,7)	374 (59,4)	
	1 степень 1 degree	2 (0,4)	34 (5,4)	< 0,001*	2 (0,2)	6 (1,0)	< 0,019*
	2 степень 2 degree	40 (7,2)	65 (6,0)		68 (6,8)	37 (5,9)	
Сердечно-сосудистые расстройства Cardiovascular	3 степень 3 degree	161 (29,0)	166 (15,4)		214 (21,3)	113 (17,9)	
disorders	4 степень 4 degree	240 (43,2)	254 (23,5)		315 (31,3)	179 (28,4)	
	Нет No	113 (20,3)	590 (54,6)		408 (40,5)	295 (46,8)	
Ожирение Fatness	1 стадии 1 stages	54 (9,7)	72 (6,7)	< 0,023*	90 (8,9)	36 (5,7)	< 0,101
	2 стадии 2 stages	40 (7,2)	54 (5,0)		60 (6,0)	34 (5,4)	
	3 стадии 3 stages	20 (3,6)	27 (2,5)		25 (2,5)	22 (3,5)	
	Нет No	437 (78,6)	921 (85,2)		826 (82,0)	532 (84,4)	
	Избыточная масса тела Excess body weight	5 (0,9)	7 (0,6)		6 (0,6)	6 (1,0)	

Таблица 2. Продолжение Table 2. Continuation

Показатель Indicator	Категории		циолог ologist		Пульмонолог Pulmonologist		_
	Categories	Да Yes	Нет No	р	Да Yes	Нет No	р
	Да Yes	419 (75,4)	817 (75,6)	< 0,995	762 (75,7)	474 (75,2)	< 0,975
Кашель Cough	Нет No	127 (22,8)	245 (22,7)		227 (22,5)	145 (23,0)	
	Нет данных No data available	10 (1,8)	19 (1,8)		18 (1,8)	11 (1,7)	
Бронхиальная астма	Да Yes	30 (5,4)	51 (4,7)	< 0,549	65 (6,5)	16 (2,5)	< 0,001*
Bronchial asthma	Нет No	526 (94,6)	1030 (95,3)	< 0,549	942 (93,5)	614 (97,5)	
Одышка при физических нагрузках Shortness of breath during physical exertion	Да Yes	310 (55,8)	576 (53,3)	< 0,576	22 (2,2)	11 (1,7)	
	Нет No	234 (42,1)	484 (44,8)		65 (6,5)	16 (2,5)	< 0,001*
	Нет данных No data available	12 (2,2)	21 (1,9)		942 (93,5)	614 (97,5)	
	Да Yes	247 (44,4)	445 (41,2)	< 0,406	413 (41,0)	279 (44,3)	< 0,385
Одышка в покое Shortness of breath at rest	Нет No	297 (53,4)	615 (56,9)		572 (56,8)	340 (54,0)	
	Нет данных No data available	12 (2,2)	21 (1,9)		22 (2,2)	11 (1,7)	
	Normal	8 (1,4)	12 (1,1)	< 0,49	6 (0,6)	14 (2,2)	< 0,001*
КТ/степень тяжести	CT 1	166 (29,9)	354 (32,7)		289 (28,7)	231 (36,7)	
	CT 2	263 (47,3)	504 (46,6)		456 (45,3)	311 (49,4)	
	CT 3	106 (19,1)	178 (16,5)		221 (21,9)	63 (10,0)	
	CT 4	13 (2,3)	33 (3,1)		35 (3,5)	11 (1,7)	

до заболевания COVID-19 без учета осложнений, возникших после болезни. Так, была выявлена достоверная связь между назначением консультации кардиолога и наличием сердечно-сосудистой патологии (гипертоническая болезнь, ишемическая болезнь сердца, высокий сердечно-сосудистый риск), ожирением и также мужским полом, который, как известно, чаще подвержен риску развития заболеваний сердца. Вероятность назначения консультации пульмонолога была достоверно чаще пациентам с бронхиальной астмой в анамнезе, а также при наличии во время болезни одышки или поражения легких по результатам компьютерной томографии.

Далее на заключительном этапе нашего исследования мы разработали прогностические

модели на каждое из реабилитационных мероприятий в выписных эпикризах для определения тех характеристик здоровья пациентов, которые будут повышать вероятность назначения реабилитационных мероприятий. В процессе работы нами не было получено статистически значимых моделей для оценки тактики назначения врачами в реабилитационном периоде таких мероприятий, как дыхательная гимнастика, физические упражнения, мониторинг уровня глюкозы и специальной диеты (при наличии кашля или одышки, повышении температуры и др.) и сопутствующих патологий в анамнезе.

В связи с этим ниже представлены только статистически значимые модели, оценивающие вероятность назначения консультации профильных

специалистов для индивидуального подбора мероприятий в реабилитационном периоде.

Модель \mathbb{N}° 1 оценивает характеристики здоровья пациентов, при которых более вероятно при выписке назначение консультации эндокринолога. Число наблюдений составило 1621. Наблюдаемая зависимость описывается уравнением:

$$P = 1 / (1 + e^{-z}) \times 100\%$$

$$z = 1,950 - 0,286X_{2ct} + 0,032X_{3ct} + 0,595X_{1ct} - 1,116X_{MMT} - 2,415X_{CG} - 0,488X_{CC3/атеросклероз} - 0,924$$

$$X_{CC3/атеросклероз}$$

где P – вероятность отсутствия назначения консультации эндокринолога,

предикторы модели:

 X_{2ct} – ожирение (0 – нет, 1 – 2 степень),

 $X_{_{3cr}}^{^{--}}$ – ожирение (0 – нет, 1 – 3 степень),

 $X_{\text{1ст}}$ – ожирение (0 – нет, 1 – 1 степень),

 $X_{_{\text{ИМТ}}}$ – ожирение (0 – нет, 1 – избыточная масса тела (ИМТ)),

 X_{cd} – сахарный диабет (0 – нет СД, 1 – есть СД),

 $X_{\text{сс3/атеросклероз}}$ – сердечно-сосудистая патология или атеросклероз (0 – нет, 1 – да),

 $X_{_{\text{CC3+атеросклероз}}}$ –заболевания сердца и атеросклероз (0 – нет, 1 – да)

Полученная регрессионная модель является статистически значимой (р <0,001). Исходя из значения коэффициента детерминации Найджелкерка, модель объясняет 29,3% вероятности назначения консультации эндокринолога. При отсутствии у пациента ожирения вероятность назначения

консультации эндокринолога снижалась в 1,8 раза, а при отсутствии сахарного диабета — в 11,2 раза. При оценке влияния сердечно-сосудистой патологии или атеросклероза в анамнезе вероятность получить консультацию эндокринолога увеличивалась в 1,6 раза (при наличии одного из указанных заболеваний), а при двух указанных патологиях — в 2,5 раза. В таблице 3 показана достоверная связь с такими предикторами модели как ожирение, сахарный диабет, сердечно-сосудистые заболевания сердца (ССЗ) или/и атеросклероз.

Прогностическая модель № 2 определяет вероятность назначения консультации пульмонолога. Число наблюдений составило 1637. Наблюдаемая зависимость описывается уравнением:

$$P = 1 / (1 + e^{z}) \times 100\%$$

$$z = -0.115 + 1.020X_{_{5A}} - 1.081X_{_{KT1}} - 1.246X_{_{KT2}} - 2.128X_{_{KT3}} - 2.013X_{_{KT4}}$$

где Р – вероятность отсутствия назначения консультации пульмонолога,

предикторы модели:

 $X_{_{\text{БA}}}$ – бронхиальная астма (0 – Есть, 1 – Нет),

X_{кт1} – наличие степени КТ1 (0 – норма, 1 – да),

 ${\sf X}_{{\sf k}{\sf T}2}$ – наличие степени КТ2 (0 – норма, 1 – да),

 X_{yzz}^{-} – наличие степени КТЗ (0 – норма, 1 – да),

 $X_{_{\rm KT4}}^{_{\rm III}}$ – наличие степени КТ4 (0 – норма, 1 – да)

Полученная регрессионная модель является статистически значимой (р < 0,001). Исходя из значения коэффициента детерминации Найджелкерка, модель объясняет 5,8% наблюдаемой дисперсии вероятности назначения консультации

Таблица 3. Оценка значимости предикторов модели № 1 – модель пациента для анализа вероятности назначения консультации эндокринолога в реабилитационном периоде

Table 3. Evaluation of the significance of predictors of model N 1 – patient model for analyzing the probability of appointment of an endocrinologist consultation in the rehabilitation period

Предикторы Predictors		гизованный iusted	Стандартизованный Adjusted		
	COR; 95% ДИ COR; 95% CI	р	AOR; 95% ДИ AOR; 95% CI	р	
Ожирение: 2 ст Obesity: 2 st	0,658; 0,373–1,160	0,148	0,751; 0,388–1,454	0,396	
Ожирение: 3 ст Obesity: 3 st	0,670; 0,332–1,351	0,263	1,032; 0,44–2,382	0,941	
Ожирение: 1 ст Obesity: 1 st	2,033; 1,351–3,062	0,001*	1,812; 1,131–2,904	0,013*	
Ожирение: избыточный вес Obesity: overweight	0,582; 0,174–1,952	0,381	0,328; 0,090–1,188	0,089	
Сахарный диабет Diabetes mellitus	0,077; 0,057–0,105	< 0,001*	0,089; 0,065–0,123	< 0,001*	
CC3 или атеросклероз Cardiovascular diseases or atherosclerosis	0,347; 0,252–0,479	< 0,001*	0,614; 0,431–0,874	0,007*	
CC3 + атеросклероз Cardiovascular diseases+atherosclerosis	0,262; 0,175–0,393	< 0,001*	0,397; 0,253–0,622	< 0,001*	

Примечание: *влияние предиктора статистически значимо (p < 0.05). Note: *the influence of the predictor is statistically significant (p < 0.05).

пульмонолога. Наличие бронхиальной астмы увеличивало вероятность консультации пульмонолога в 2,7 раза, поражение легких (подтвержденное компьютерной томографией) также увеличивало вероятность консультации пульмонолога после выписки: КТ1 – в 3 раза, КТ2 – в 3,5 раза, КТ3 – в 8 раз, КТ4 в – 7,5 раз. Анализ значимости предикторов показал достоверную связь с наличием в анамнезе у пациента бронхиальной астмы, а также со степенью поражения легких по КТ (табл. 4).

Логистическая регрессионная модель № 3 была разработана для определения вероятности назначения консультации кардиолога. Число наблюдений составило 1621. Наблюдаемая зависимость описывается уравнением:

$$\begin{array}{c} P = 1 \ / \ (1 + e^{_2}) \times 100\% \\ z = 3{,}567 \ - \ 0{,}018X_{_{\text{Возраст на момент пребывания}}} \ - \ 0{,}584X_{_{\text{ПОЛ}}} \ - \\ 1{,}768X_{_{\text{CC3/атеросклероз}}} \ - \ 2{,}311X_{_{\text{CC3+атеросклероз}}} \end{array}$$

где P – вероятность отсутствия рекомендации консультации кардиолога,

предикторы модели:

 $X_{_{{\hbox{\footnotesize BOЗРАСТ На МОМЕНТ ПРЕбывания}}}-{\hbox{\footnotesize BOЗРАСТ на МОМЕНТ ПРЕбывания}}$ ния, годы

$$X_{_{\text{пол}}}$$
 – Пол пациента (0 – Женский, 1 – Мужской), $X_{_{\text{CC3/атеросклероз}}}$ – ССЗ или атеросклероз (0 – нет, 1 – да), $X_{_{\text{CC3+атеросклероз}}}$ – ССЗ+атеросклероз (0 – нет, 1 – да)

Полученная регрессионная модель является статистически значимой (р < 0,001). Исходя из значения коэффициента детерминации Найджелкерка, модель объясняет 23,2% наблюдаемой дисперсии вероятности рекомендации посещения кардиолога. У лиц старше 18 лет при увеличении возраста вероятность назначения консультации кардиолога была незначительной, но увеличивалась в 1,02 раза на каждый год пациента, мужчины получали направление на консультацию в 1,8 раза чаще, чем женщины, ССЗ или атеросклероз

of appointment of a pulmonologist consultation in the rehabilitation period

повышали вероятность назначения консультации в 5,9 раза, при наличии двух патологий единовременно — в 10,1 раза. Модель показала достоверную связь зависимости между возрастом пациента на момент госпитализации, его полом и наличием у него патологий сердечно-сосудистой системы (таблица 5).

Таким образом, полученные нами модели подтверждают, что зачастую при выписке из стационара пациентам реабилитационные мероприятия назначаются по паттернам симптомов хронических заболеваний, имеющихся у пациентов в анамнезе до заболеваемости COVID-19. Поэтому в настоящее время необходимым является выстраивание четкого алгоритма реабилитационной траектории пациентам, перенесшим COVID-19, на основе разработки минимального стандарта реабилитационной помощи с учетом патологических процессов, происходивших во время болезни, и наиболее поражаемых органов мишеней. На практике представленные в исследовании регрессионные модели могут быть использованы при экономическом анализе затрат на обеспечение оптимального и эффективности объема реабилитационных мероприятий, рекомендуемых пациентам, перенесшим COVID-19 [12].

Заключение

Очевидно, что последствия COVID-19 будут занимать существенное место в медицинской практике, а реабилитационные мероприятия являться ключевой составляющей медицинской помощи перенесшим COVID-19 [13]. Анализ предикторов, выявленных статистически значимыми регрессионными моделями, показал, что при принятии решения о назначении реабилитационных мероприятий или консультации специалистов при выписке пациента из стационара врачи чаще опираются

Таблица 4. Оценка значимости предикторов модели № 2 – модель пациента для анализа вероятности назначения консультации пульмонолога в реабилитационном периоде
Table 4. Evaluation of the significance of predictors of model No. 2 - patient model for analyzing the probability

Предикторы Predictors	Нестандарт Unadj	гизованный usted	Стандартизованный Adjusted		
	COR; 95% ДИ COR; 95% CI	р	AOR; 95% ДИ AOR; 95% CI	р	
Бронхиальная астма отсутствует There is no bronchial asthma	2,648; 1,517–4,618	0,001*	2,773; 1,581 – 4,870	< 0,001*	
KT1 CT1	0,343; 0,130-0,906	0,031*	0,339; 0,128-0,903	0,030*	
KT2 CT2	0,292; 0,111-0,769	0,013*	0,288; 0,109–0,762	0,012*	
KT3 CT3	0,122; 0,045-0,331	< 0,001*	0,119; 0,044-0,325	< 0,001*	
KT4 CT4	0,135; 0,042-0,435	0,001*	0,134; 0,041–0,434	0,001*	

Примечание: *влияние предиктора статистически значимо (p < 0.05). Note: *the influence of the predictor is statistically significant (p < 0.05).

Таблица 5. Оценка значимости предикторов модели № 3 – модель пациента для анализа вероятности назначения консультации кардиолога в реабилитационном периоде

Table 5. Assessment of the significance of predictors of model No. 3 – patient model for analyzing the probability of appointment of a cardiologist consultation in the rehabilitation period

Предикторы Predictors		гизованный usted	Стандартизованный Adjusted		
	COR; 95% ДИ COR; 95% CI	р	AOR; 95% ДИ AOR; 95% CI	р	
Возраст на момент пребывания Age at the time of stay	0,959; 0,951–0,967	< 0,001*	0,982; 0,972–0,991	< 0,001*	
Мужской пол Male gender	0,758; 0,616–0,934	0,009*	0,558; 0,440-0,705	< 0,001*	
CC3 или атеросклероз Cardiovascular diseases/ atherosclerosis	0,148; 0,108-0,201	< 0,001*	0,171; 0,122–0,239	< 0,001*	
CC3 + атеросклероз Cardiovascular diseases+atherosclerosis	0,072; 0,049–0,107	< 0,001*	0,099; 0,064–0,153	< 0,001*	

Примечание: *влияние предиктора статистически значимо (p < 0.05). Note: *the influence of the predictor is statistically significant (p < 0.05).

на патологии, уже имеющиеся у пациентов до заболевания COVID-19 или на нарушения, возникающие в разгаре заболевания практически (наличие одышки и степень тяжести по КТ), но без учета возможных осложнений болезни. В индивидуальном плане реабилитационных мероприятий, составленном при участии специалистов (кардиологов, пульмонологов, эндокринологов и др.) необходимо учитывать тяжесть перенесенного заболевания, степень повреждения легочной ткани, сердца, сосудов и других органов, последствия лечения (пребывания на инвазивной вентиляции легких), физические, нейрокогнитивные и психологические нарушения, состояние опорно-двигательного аппарата, снижение массы тела и мышечной массы, нутритивный статус, наличие таких симптомов, как

утомляемость, астения и миалгии (постCOVID-19синдрома с хронической утомляемостью), а также субъективные жалобы самого пациента. В заключение следует отметить, что, учитывая распространенность коронавирусной инфекции и выраженное снижение функций организма у перенесших это заболевание, необходима разработка алгоритма для врачей с включением четких критериев и показаний для назначения различных видов реабилитационных мероприятий для пациентов в восстановительном периоде после перенесенной инфекции COVID-19 с учетом патологических процессов, происходящих во время течения заболевания и наиболее поражаемых органов-мишеней, то есть с учетом степени повреждения легочной ткани, сердца, сосудов и других органов.

Литература

- Ситуация с COVID-19 в Европейском регионе ВОЗ инфекции [Интернет]. ЕРБ ВОЗ с информацией о COVID-19. Доступно на: https://who.maps.arcgis.com/apps/dashboards/a19d5d1f86ee4d99b013eed5f637232d. Ссылка активна на 24 мая 2023.
- COVID-19 rapid guideline: managing the long-term effects of COVID-19 NICE, RCGP, and SIGN [Internet]. Publishing, version history and subscription 1.20 published on 03.11.2022 Доступно на: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742. Ссылка активна на 25 мая 2023.
- 3. Старичкова А. А., Цыганкова О. В., Хидирова Л. Д. и др. Кардиометаболические нарушения при SARS-CoV-2-инфекции и постковидном синдроме. Лечащий врач. 2022. №3. С. 49–58.
- 4. Шавловская О. А., Бокова И. А., Шавловский Н. И. Постковидный болевой синдром: обзор международных наблюдений. Неврология, нейропсихиатрия, психосоматика. 2022. Т. 14, №2. С. 91–97.
- Moreno-Pérez O., Merino E., Leon-Ramirez J.M., et al. Post-acute COVID-19 syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021. Vol. 82, N3. P. 378–383.
 Айтбаев К. А. Муркамилов И. Т. Муркамилова Ж. А. и др. Постковидный синдром: настота, клинический спектр и проблемы для амбулаторной службы.
- 6. Айтбаев К. А., Муркамилов И. Т., Муркамилова Ж. А. и др. Постковидный синдром: частота, клинический спектр и проблемы для амбулаторной службы. Практическая медицина. 2021. Т. 19, №5. С. 15–20.
- Михайлова А. С., Мещерякова Н. Н., Белевский А. С. Подходы к лечению и реабилитации пациентов с постковидным синдромом (клинический пример).
 Практическая пульмонология. 2020. №4. С. 29–32.
 Иванников А. А., Эсауленко А. Н., Васильченко М. К. и др. COVID-19 и сердечно-сосудистая система. Часть II. Постковидный синдром. Журнал им. Н. В.
- Склифосовского «Неотложная медицинская помощь». 2021. Т. 10, №2. С. 248–258. 9. Амиров Н. Б., Давлетшина Э. И., Васильева А. Г. и др. Постковидный синдром: мультисистемные «дефициты». Вестник современной клинической медицины.
- 2021. Т. 14, №6. С. 94–104. 10. Беляков Н. А., Симакина О. Е., Трофимова Т. Н. Природа и последствия постковидного синдрома. Вестник НовГУ. 2022. Т. 126, №1. С. 25–31.
- 11. Медицинская реабилитация при новой коронавирусной инфекции (COVID-19). [Интернет]. Версия 3 (01.11.2022) Временные методические рекомендации (утв. Министерством здравоохранения РФ 1 ноября 2022 г.). Версия 3 (01.11.2022). Доступно ра: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/202/original/BKP_MP_COVID_19__версия_07112022_без_правок.pdf?1669800267. Ссылка активна на 24 мая 2023.
- 12. Menges D., Ballouz T., Anagnostopoulos A., et al. Burden of post-COVID-19 syndrome and implications for healthcare service planning: A population-based cohort study. PLoS One. 2021. Vol. 16, N7. P. e0254523.

13. Бубнова М. Г., Шляхто Е. В., Аронов Д. М. и др. Новая коронавирусная инфекционная болезнь COVID-19: особенности комплексной кардиологической и респираторной реабилитации. Российский кардиологический журнал. 2021. Т. 26, №5. С. 4487.

References

- The situation with COVID-19 in the WHO European Region of infection [Internet]. WHO/Europe with information about COVID-19. Available at: https://who.maps.arcgis.com/apps/dashboards/a19d5d1f86ee4d99b013eed5f637232d. Accessed: 24 May 2023.
- COVID-19 rapid guideline: managing the long-term effects of COVID-19 [Internet]. NICE, RCGP, and SIGN. Publishing, version history and subscription 1.20 published on 03.11.2022 Available at: https://www.nice.org.uk/guidance/ng188/resources/covid19-rapid-guideline-managing-the-longterm-effects-of-covid19-pdf-51035515742. Accessed: 25 May 2023.
- Starichkova AA, Tsygankova OV, Khidirova LD, et al. Cardiometabolic disorders in SARS-CoV-2 infection and post-covid syndrome. Lechaschi Vrach. 2022;3:49–58 (In Russ.). doi: 10.51793/OS.2022.25.3.008
- 4. Shavlovskaya OA, Bokova IA, Shavlovskiy NI. Post-COVID pain syndrome: a review of international observations. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(2):91–97 (In Russ.). doi: 10.14412/2074-2711-2022-2-91-97
- 5. Moreno-Pérez O, Merino E, Leon-Ramirez JM. COVID19-ALC research Post-acute COVID-19 Syndrome. Incidence and risk factors: a Mediterranean cohort study. J Infect. 2021;82(3):378–383. doi: 10.1016/j.jinf.2021.01.004.
- 6. Aitbaev KA, Murkamilov IT, Murkamilova ZhA, et al. Post-COVID syndrome: Incidence, clinical spectrum and challenges for primary health care professionals. Practical medicine. 2021;19(5):15–20. (In Russ.). doi: 10.14412/2074-2711-2022-2-91-9710.32000/2072-1757-2021-5-15-20.
- 7. Mikhailova AS, Mescheryakova NN, Belevskiy AS. Approaches to the Treatment and Rehabilitation of Patients with Post-COVID-19 Syndrome (Clinical Case). Practical pulmonology. 2020;4:29–32.
- 8. Ivannikov AA, Esaulenko AN, Vasilchenko MK, et al. COVID-19 and Cardiovascular System. Part II. Post-COVID Syndrome. Russian Sklifosovsky Journal «Emergency Medical Care». 2021;10(2):248–258 (In Russ.). doi: 10.23934/2223-9022-2021-10-2-248-258
- 9. Amirov NB, Davletshina El, Vasilieva AG, et al. Postcovid syndrome: multisystem «deficits». The Bulletin of Contemporary Clinical Medicine. 2021;14(6):94–104 (In Russ.). doi: 10.20969/VSKM.2021.14(6).94–104
- 10. Belyakov NA, Simakina OE, Trofimova TN. Nature and consequences of post-covid-19 syndrome. Vestnik NovSU. 2022;126(1):25–31 (In Russ.). doi: 10.34680/2076-8052.2022.1(126).25-31
- 11. Medicinskaya reabilitaciya pri novoj koronavirusnoj infekcii (COVID-19). [Internet]. Versiya 3 (01.11.2022) Vremennye metodicheskie rekomendacii (utv. Ministerstvom zdravoohraneniya RF 1 noyabrya 2022 g.). Versiya 3 (01.11.2022). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/061/202/original/VKR_MR_COVID_19_versiya_07112022_bez_pravok.pdf?1669800267. Accessed: 24 May 2023.
- 12. Menges D, Ballouz T, Anagnostopoulos A, et al. Burden of post-COVID-19 syndrome and implications for healthcare service planning: A population-based cohort study. PLoS One. 2021;16(7):e0254523. doi: 10.1371/journal.pone.0254523
- 13. Bubnova MG, Shlyakhto EV, Aronov DM, et al. Coronavirus disease 2019: features of comprehensive cardiac and pulmonary rehabilitation. Russian Journal of Cardiology. 2021;26(5):4487 (In Russ.). doi: 10.15829/1560-4071-2021-4487

Об авторе

 Кирилл Сергеевич Ломоносов – аспирант, ФГАОУ ВО Первый МГМУ им. И.М. Сеченова Минздрава России (Сеченовский Университет), +7 (925) 569-93-60, lomonosov_k_s@student.sechenov.ru. ORCID 0000-0002-7207-5306

Поступила: 28.05.2023. Принята к печати: 05.06.2023.

Контент доступен под лицензией СС ВУ 4.0.

About the Author

Kirill S. Lomonosov – graduate student, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University). +7 (925) 569-93-60, lomonosov_k_s@student.sechenov.ru. ORCID 0000-0002-7207-5306.

Received: 28.05.2023. Accepted:

Creative Commons Attribution CC BY 4.0.