Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Коронавирус SARS-Cov-2: сложности патогенеза, поиски вакцин и будущие пандемии

https://doi.org/10.31631/2073-3046-2020-19-3-4-20

Аннотация

Актуальность. Вакцина против коронавируса SARS-Cov-2 рассматривается как наиболее перспективное средство для укрощения вызванной им нынешней пандемии и воспрепятствования возникновению новой. В числе трудностей создания вакцин выбор иммунодоминантных антигенов, обеспечивающих их эффективность и безвредность. Цель исследования - показать полезность применения концепции пептидного континуума родства белков (ПКРБ) для понимания сложности патогенеза Covid-19, поиска вакцин против Covid-19 и обсудить возможную природу будущих пандемий. Материалы и методы. Для выявления компьютерным анализом пептидного (иммуноэпитопного) родства S, M и N белков SARS-Cov-2 с белками человека и других вирусов был выполнен поиск гомологичных последовательностей. Источниками первичных последовательностей белков служили доступные в Интернете базы данных. Результаты. S-белку свойственно пептидное (иммуноэпитопное) родство со многими белками человека, локализующимися на поверхности клеток или циркулирующими в крови, и вирусов. Образование антител к SARS-Cov-2, перекрестно реагирующих с гомологичными последовательностями в белках человека, может отягощать течение Covid-19. Присутствие таких гомологичных последовательностей в вакцине против Covid-19 связано с риском развития аутоиммунных осложнений и гетерологичного иммунитета. Вывод. Концепция пептидного континуума родства белков (ПКРБ) представляется полезной в поисках иммунных эпитопов для вакцин против Covid-19 и позволяет спрогнозировать возможные риски, связанные с их применением. По-видимому, в будущем коронавирусные вспышки и пандемии будут чаще, чем пандемии гриппа.

Об авторе

Е. П. Харченко
Институт эволюционной физиологиии и биохимии им. И.М. Сеченова РАН
Россия

Харченко Евгений Петрович - доктор биологических наук, ведущий научный сотрудник Института эволюционной физиологии и биохимии им. И. М. Сеченова, РАН.

194223, Санкт-Петербург, пр. Тореза, 44.

+7 (904) 338-22-80.



Список литературы

1. Tay MZ, Poh CM, Rёnia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020 Jun;20(6):363-374. doi: 10.1038/s41577-020-0311-8.

2. Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005;11(11):1730-7. PMID: 16318725.

3. Peiris JS, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus- associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767-1772. doi: 10.1016/s0140-6736(03)13412-5.

4. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. doi: 10.12932/AP-200220-0772.

5. Харченко Е. П. Иммуноэпитопный континуум родства белков и полиреактивность и аутореактивность антител. Медицинская иммунология. 2015. Т. 17, N. 4. C. 335-346. doi: 10.15789/1563-0625-2015-4-335-346.

6. Харченко Е. П. Коронавирус SARS-Cov-2: особенности структурных белков, контагиозность и возможные иммунные коллизии. //Эпидемиология и Вакцинопрофилактика. 2020. Т. 19(2). С.13-30. doi: 10.31631/2073-3046-2020-19-2-13-30.

7. Vujicic AD, Gemovic B, Veljkovic V, et al. Natural autoantibodies in healthy neonatals recognizing a peptide derived from the second conserved region of HIV-1 gp120. Vojno-sanit Pregl. 2014;71(4):352-361. doi:10.2298/vsp1404352d.

8. Cohen IR, Hershberg U, Sorin S. Antigen-receptor degeneracy and immunological paradigms. Mol. Immunol. 2004;40:993-996. doi: 10.1016/j.molimm.2003.11.020.

9. Mellor AI, Munn DH. Immune privilege: a recurrent theme in immunoregulation. Immunol. Rev. 2006;213:5-11.

10. Parnes O. From interception to incorporation: degeneracy and promiscuous recognition as precursors of a paradigm shift in immunology. Mol. Immunol. 2004; 40:985-991. doi:10.1016/j.molimm.2003.11.021

11. Sercarz EE, Maverakis E. Recognition and function in a degenerative immune system. Mol. Immunol. 2004;40:1003-1008. doi: 10.1016/j.molimm.2003.11.002.

12. Wucherpfennig KW. T cell receptor cross reactivity as a general property of T cell recognition. Mol. Immunol. 2004;40:1009-1017. doi:10.1016/j.molimm.2003.11.003.

13. Rothstein T, Griffin DO, Holodick N, et al. Human B-1 cells take the stage. Annals of the New York Academy of Sciences. 2013;1285:97-114. doi: 10.1111/nyas.12137.

14. Van Regenmortel M. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from helping to develop an effective HIV-1 vaccine. Frontiers in Immunology. 2014;5:1-8. doi: 10.3389/fimmu.2014.00593.

15. Nagele EP, Han M, Acharya NK, et al. Natural IgG autoantibodiesare abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE.2013; 8(4).e60726. doi: 10.1371/journal.pone.0060726.

16. Blum JS, Wearsch PA, Cresswell P. Pathways of Antigen Processing. Annu. Rev. Immunol. 2013; 31:443-473. doi: 10.1146/annurev-immunol-032712-095910.

17. Chemali M, Radtke K, Desjardins M, et al. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell. Mol. Life Sci. 2011;68:1533-1541. doi: 10.1007/s00018-011-0660-3.

18. Basler M, Kirk CJ, Groettrup M. The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology. 2012;25:1-7. doi: 10.1016/j.coi.2012.11.004.

19. Sijts EJ, Kloetzel P-M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci. 2011;68:1491-1502. doi: 10.1007/s00018-011-0657-y.

20. Ашмарин И. П., Фрейдлин И. С. Гипотеза об антителах как новейших регуляторах физиологических функций, созданных эволюцией. // Журнал эволюционной биохимии и физиологии, 1989. Т. 25, № 2. С. 176-181.

21. Plotkin SA. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010;17(7):1055-1065. doi: 10.1128/CVI.00131-10.

22. Mathis D, Benoist C. Aire. Annu. Rev. Immunol. 2009;27:287-312. doi: 10.1146/annurev.immunol.25.022106.141532.

23. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nature Immunology. 2017;18(7):716-724. doi:10.1038/ni.3731.

24. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends in Immunology.2011;32(1):12-18. doi:10.1016/j.it.2010.11.002.

25. Alberer M, Gnad-Vogt U, von Sonnenburg F, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first in human phase 1 clinical trial. Lancet 2017 Sep 25;390(10101):1511-1520. doi: 10.1016/S0140-6736(17)31665-3.

26. McCarthy BJ, Nishiura JT, Doenecke D, et al. Transcription and chromatin structure. Cold Spring Harbor Sympos. Quant. Biol. 1974;38:763-771. doi: 10.1101/sqb.1974.038.01.081.

27. Albert ML, Darnell RB. Paraneoplastic neurological degenerations: keys to tumor immunity. Nat. Rev. Cancer. 2004;4(1):36-44. doi: 10.1038/nrc1255.

28. Roberts WK, Darnell RB. Neurobiology of the paraneoplastic neurological degenerations. Cur. Opinion Immunol. 2004:16(5):616-622. doi: 10.1016/j.coi.2004.07.009.

29. Ahmed SS, Volkmuth W, Duca J,et all. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl. Med. 2015;7(294).ra105. doi: 10.1126/scitranslmed.aab2354.

30. Харченко Е. П. Возможные коллизии в иммунодиагностике вирусных инфекций и вакцинации. // Инфекция и иммунитет. 2016. Т. 6, № 2. С. 157-164. doi: 10.15789/2220-7619-20162-157-164.

31. Virgin HW, Wherry EJ, Ahmed R. Redefining Chronic Viral Infection. Cell. 2009;138:30-50. doi 10.1016/j.cell.2009.06.036.

32. de Alwis R, Chen S, Gan ES, et al. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine . 2020;55(102768). doi:10.1016/j.ebiom.2020.102768.

33. Vatti A, Monsalve DM, Pacheco Y, et al. Original antigenic sin: A comprehensive review. Journal of Autoimmunity. 2017;83:12-21. doi:10.1016/j.jaut.2017.04.008.

34. Feng-Cai Zhu, Yu-Hua Li, Xu-Hua Guan, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020 Jun 13;395(10240):1845-1854. Doi:10.1016/S0140-6736(20)31208-3.

35. Харченко Е. П. Распространенность генетической рекомбинации между вирусами и человеком, возможное ее влияние на вакцинацию. Эпидемиология и Вакцинопрофилактика. 2019;18(5);4-14. doi: 10.31631/2073-3046-2019-18-6.

36. Siwei Nie, Sue-Jane Lin, Sung-kwon Kim, et al. Pathological features of heterologous immunity are regulated by the private specificities of the immune repertoire. Am J Pathol. 2010 May;176(5):2107-12. doi: 10.2353/ajpath.2010.090656.

37. Jiang S, Bottazzi ME, Du L, et al. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Review of Vaccines. 2012;11(12):1405-1413. doi: 10.1586/erv.12.126.

38. Gil A, Kenney LL, Mishra R, et al. Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg. 2015;109(1):62-69. doi:10.1093/trstmh/tru198.

39. Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv. 2020. doi:10.1101/2020.03.24.20042937.

40. Харченко Е. П. Оптимизация прогнозирования вакцинных штаммов гриппа. Эпидемиология и Вакцинопрофилактика. 2019;18(1):4-17. doi: 10.31631/20733046-2019-18-1-4-17.

41. Peck KM, Burch CL, Heise MT, et al. Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives. Annu Rev Virol. 2015 Nov;2(1):95-117. doi:10.1146/annurev-virology-100114-055029.

42. Korber B1, Fischer WM1, Gnanakaran S1, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. BioRxiv. 2020. doi:10.1101/2020.04.29.069054.

43. Yueping Liu, Yue Pang, Zhenhong Hu, et al. Thymosin alpha 1 (Ta1) reduces the mortality of severe COVID-19 by restoration of lymphocytopenia and reversion of exhausted T cells. Clin Infect Dis. 2020 May 22;ciaa630. doi:10.1093/cid/ciaa630/5842185.

44. Харченко Е. П. Эволюционные аспекты оценки возможного числа и источников белковых регуляторов в организме. // Журнал эволюционной биохимии и физиологии - 1988. Т. 24. С. 240-250.


Рецензия

Для цитирования:


Харченко Е.П. Коронавирус SARS-Cov-2: сложности патогенеза, поиски вакцин и будущие пандемии. Эпидемиология и Вакцинопрофилактика. 2020;19(3):4-20. https://doi.org/10.31631/2073-3046-2020-19-3-4-20

For citation:


Kharchenko E.P. The Coronavirus SARS-Cov-2: the Complexity of Infection Pathogenesis, the Search of Vaccines and Possible Future Pandemics. Epidemiology and Vaccinal Prevention. 2020;19(3):4-20. (In Russ.) https://doi.org/10.31631/2073-3046-2020-19-3-4-20

Просмотров: 2121


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)