The Coronavirus SARS-Cov-2: the Complexity of Infection Pathogenesis, the Search of Vaccines and Possible Future Pandemics
https://doi.org/10.31631/2073-3046-2020-19-3-4-20
Abstract
Relevance. The vaccine against the SARS-Cov-2 coronavirus is considered as the most promising approach to curb (tame) a current pandemic and prevent new one. Among difficulties in vaccine creating is a right choice of immunodominant antigens providing the effectiveness and safety of vaccines. Aim is to show the usefulness of application of the global immune epitope continuum protein relationship concept in the search of vaccines against SARS-Cov-2 and discuss the possible nature of future pandemics. Materials and method. For the computer analysis of peptide (immune epitope) relationship amongst the SARS-Cov-2 structural proteins, human proteins and proteins of other viruses, the search of homologous sequences was made. All protein sequences sequences were used from databases available on the INTERNET. Results. In the SARS-Cov-2 structural proteins, especially in S-protein, there are a large number of peptide sequences homologous to human and viral proteins that may be the cause of autoimmune complications and/or heterologous immunity. Conclusion: The concept of the global immune epitope continuum of protein relationship is of value in the search of immune epitopes for the vaccines against SARS-Cov-2 and allows us to predict the possible risks in vaccines. The coronavirus breaks and pandemics may be more often than the influenza pandemics.
About the Author
E. P. KharchenkoRussian Federation
Eugene P. Kharchenko - Dr. Sci. (Biol.), leader researcher of I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy Sciences.
194223, St. Petersburg, Toreza pr., 44.
+7 (904) 338-22-80.
References
1. Tay MZ, Poh CM, Rёnia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020 Jun;20(6):363-374. doi: 10.1038/s41577-020-0311-8.
2. Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005;11(11):1730-7. PMID: 16318725.
3. Peiris JS, Chu CM, Cheng VCC, et al. Clinical progression and viral load in a community outbreak of coronavirus- associated SARS pneumonia: a prospective study. Lancet. 2003;361:1767-1772. doi: 10.1016/s0140-6736(03)13412-5.
4. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. doi: 10.12932/AP-200220-0772.
5. Kharchenko EP. Immune epitope continuum of the protein relationships, poly- and autoreactivity of antibodies. Medical Immunology. 2015;17(4):335-346. (In Russ.). doi: 10.15789/1563-0625-2015-4-335-346.
6. Kharchenko EP. The Coronavirus SARS-Cov-2: the characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiology and Vaccinal Prevention. 2020;19(2):13-30. https://doi: 10.31631/2073-3046-2020-19-2-13-30.
7. Vujicic AD, Gemovic B, Veljkovic V, et al. Natural autoantibodies in healthy neonatals recognizing a peptide derived from the second conserved region of HIV-1 gp120. Vojno-sanit Pregl. 2014; 71(4):352-361. doi:10.2298/vsp1404352d.
8. Cohen IR, Hershberg U, Sorin S. Antigen-receptor degeneracy and immunological paradigms. Mol. Immunol. 2004;40:993-996. doi: 10.1016/j.molimm.2003.11.020.
9. Mellor AI, Munn DH. Immune privilege: a recurrent theme in immunoregulation. Immunol. Rev. 2006;213:5-11.
10. Parnes O. From interception to incorporation: degeneracy and promiscuous recognition as precursors of a paradigm shift in immunology. Mol. Immunol. 2004; 40:985-991. doi:10.1016/j.molimm.2003.11.021.
11. Sercarz EE, Maverakis E. Recognition and function in a degenerative immune system. Mol. Immunol. 2004;40:1003-1008. doi: 10.1016/j.molimm.2003.11.002.
12. Wucherpfennig KW. T cell receptor cross reactivity as a general property of T cell recognition. Mol.Immunol. 2004;40:1009-1017. doi:10.1016/j.molimm.2003.11.003.
13. Rothstein T, Griffin DO, Holodick N, et al. Human B-1 cells take the stage. Annals of the New York Academy of Sciences. 2013;1285:97-114. doi: 10.1111/nyas.12137.
14. Van Regenmortel M. An outdated notion of antibody specificity is one of the major detrimental assumptions of the structure-based reverse vaccinology paradigm, which prevented it from helping to develop an effective HIV-1 vaccine. Frontiers in Immunology. 2014;5:1-8. doi: 10.3389/fimmu.2014.00593.
15. Nagele EP, Han M, Acharya NK, DeMarshall C, et al. Natural IgG autoantibodiesare abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLoS ONE. 2013;8(4).e60726. doi: 10.1371/journal.pone.0060726.
16. Blum JS, Wearsch PA, Cresswell P Path ways of Antigen Processing. Annu. Rev. Immunol. 2013;31:443-473. doi: 10.1146/annurev-:mmunol-032712-095910.
17. Chemali M, Radtke K, Desjardins M, et al. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell. Mol. Life Sci. 2011;68:1533-1541. doi: 10.1007/s00018-011-0660-3.
18. Basler M, Kirk CJ, Groettrup M. The immunoproteasome in antigen processing and other immunological functions. Current Opinion in Immunology. 2012;25:1-7. doi: 10.1016/j.coi.2012.11.004.
19. Sijts EJ, Kloetzel P-M. The role of the proteasome in the generation of MHC class I ligands and immune responses. Cell. Mol. Life Sci. 2011;68:1491-1502. doi: 10.1007/s00018-011-0657-y.
20. Ashmarin IP, Freidlin IS. Hypothesis on antibodies as the latest regulators of physiological functions created by evolution. Journal of Evolutionary Biochemistry and Physiology. 1989;25(2):176-181. (In Russ.)
21. Plotkin SA. Correlates of protection induced by vaccination. Clin . Vaccine Immunol. 2010;17(7):1055-1065. doi: 10.1128/CVI.00131-10.
22. Mathis D, Benoist C. Aire. Annu. Rev. Immunol. 2009;27:287-312. doi: 10.1146/annurev.immunol.25.022106.141532.
23. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nature Immunology. 2017;18(7):716-724. doi:10.1038/ni.3731.
24. Fletcher AL, Malhotra D, Turley SJ. Lymph node stroma broaden the peripheral tolerance paradigm. Trends in Immunology.2011;32(1):12-18. doi:10.1016/j.it.2010.11.002.
25. Alberer M, Gnad-Vogt U, von Sonnenburg F, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first in human phase 1 clinical trial. Lancet 2017 Sep 25;390(10101):1511-1520. doi: 10.1016/S0140-6736(17)31665-3.
26. McCarthy BJ, Nishiura JT, Doenecke D, et al. Transcription and chromatin structure. Cold Spring Harbor Sympos. Quant. Biol. 1974;38:763-771. doi: 10.1101/sqb.1974.038.01.081.
27. Albert ML, Darnell RB. Paraneoplastic neurological degenerations: keys to tumor immunity. Nat. Rev. Cancer. 2004;4(1):36-44. doi: 10.1038/nrc1255.
28. Roberts WK, Darnell RB. Neurobiology of the paraneoplastic neurological degenerations. Cur. Opinion Immunol. 2004:16(5):616-622. doi: 10.1016/j.coi.2004.07.009.
29. Ahmed SS, Volkmuth W, Duca J,et all. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci. Transl. Med. 2015;7(294).ra105. doi: 10.1126/scitranslmed.aab2354.
30. Kharchenko EP. The possible collisions in virus infection immunodiagnostics and vaccination. Russian Journal of Infection and Immunity. 2016;6(2):157-164. (In Russ.). doi: 10.15789/2220-7619-2016-2-157-164.
31. Virgin HW, Wherry EJ, Ahmed R. Redefining Chronic Viral Infection. Cell. 2009;138:30 -50. doi 10.1016/j.cell.2009.06.036.
32. de Alwis R, Chen S, Gan ES, et al. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine . 2020;55(102768). doi:10.1016/j.ebiom.2020.102768.
33. Vatti A, Monsalve DM, Pacheco Y, et al. Original antigenic sin: A comprehensive review. Journal of A utoimmunity. 2017;83:12-21. doi:10.1016/j.jaut.2017.04.008.
34. Feng-Cai Zhu, Yu-Hua Li, Xu-Hua Guan, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020 Jun 13;395(10240):1845-1854. Doi:10.1016/S0140-6736(20)31208-3.
35. Kharchenko EP. The Occurrence of genetic recombination between viruses and human - its possible influence on vaccination. Epidemiology and Vaccinal Prevention. 2019;18(5):4-14 (In Russ.). doi: 10.31631/2073-3046-2019-18-6-4-14.doi: 10.31631/2073-3046-2019-18-6-4-14.
36. Siwei Nie, Sue-Jane Lin, Sung-kwon Kim, et al. Pathological features of heterologous immunity are regulated by the private specificities of the immune repertoire. Am J Pathol. 2010 May;176(5):2107-12. doi: 10.2353/ajpath.2010.090656.
37. Jiang S, Bottazzi ME, Du L, et al. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. // Expert Review of Vaccines. 2012;11(12):1405-1413. doi: 10.1586/erv.12.126.
38. Gil A, Kenney LL, Mishra R, et al. Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg. 2015;109(1):62-69. doi:10.1093/trstmh/tru198.
39. Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv. 2020. doi:10.1101/2020.03.24.20042937.
40. Kharchenko EP. Optimization of the predicting of the influenza vaccine strains. Epidemiology and Vaccinal Prevention. 2019;18(1):4-17 (In Russ.). https://doi: 10.31631/20733046-2019-18-1-4-17.
41. Peck KM, Burch CL, Heise MT, et al. Coronavirus Host Range Expansion and Middle East Respiratory Syndrome Coronavirus Emergence: Biochemical Mechanisms and Evolutionary Perspectives. Annu Rev Virol. 2015 Nov;2(1):95-117. doi:10.1146/annurev-virology-100114-055029.
42. Korber B1, Fischer WM1, Gnanakaran S1, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. BioRxiv. 2020. doi:10.1101/2020.04.29.069054.
43. Yueping Liu, Yue Pang, Zhenhong Hu, et al. Thymosin alpha 1 (Ta1) reduces the mortality of severe COVID-19 by restoration of lymphocytopenia and reversion of exhausted T cells. Clin Infect Dis. 2020 May 22;ciaa630. doi:10.1093/cid/ciaa630/5842185.
44. Kharchenko EP. Evolutionary aspects of evaluation of possible number and sources of protein regulators in the organism. Journal of Evolutionary Biochemistry and Physiology. 1989;25(2):240-249 (In Russ.)
Review
For citations:
Kharchenko E.P. The Coronavirus SARS-Cov-2: the Complexity of Infection Pathogenesis, the Search of Vaccines and Possible Future Pandemics. Epidemiology and Vaccinal Prevention. 2020;19(3):4-20. (In Russ.) https://doi.org/10.31631/2073-3046-2020-19-3-4-20