Preview

Epidemiology and Vaccinal Prevention

Advanced search

Development and Investigation of Diagnostic Efficiency of a Test Kit for the Detection of IgM-antibodies to Individual Antigens of Rubella Virus by Immunoblotting (Western Blot)

https://doi.org/10.31631/2073-3046-2020-19-3-57-63

Abstract

Relevance. During serological diagnosis of rubella by enzyme immunoassay (detecting IgM), it is possible to obtain an indefinite or false-positive result. In this case, is needed an additional confirmatory test. It can be carried out by immune blotting, which allows detecting antibodies to specific rubella antigens. To date, in the Russian Federation, there is no such kit of reagents, which makes its development quite actual. Aim. The aim of this research was the development of a Russian test kit for detecting IgM-antibodies to individual rubella virus antigens by immune blotting (Western blot format). Materials and methods. Production of immunosorbent for a new test kit included electrophoresis of the native rubella virus lysate in a polyacrylamide gel to separate proteins by molecular weight and transfer (blotting) of separated proteins onto a nitrocellulose membrane. Investigation of sensitivity and specificity of the new test kit was carried with standard panels of serums containing and not containing IgM to the rubella virus, and with clinical samples characterized by the ELISA method. Results and its discussion. As a result of this work, was designed a Russian test kit that allowed detection IgM-antibodies to individual rubella virus antigens by immune blotting. This test kit has analytical sensitivity and specificity -100%, diagnostic sensitivity - at least 99.61% and diagnostic specificity - and at least 99-99%. The diagnostic efficiency is not less than 99.5%. Conclusion. The developed test kit has high rates of analytical and diagnostic sensitivity and specificity, as well as high diagnostic efficiency. It is intended for confirmatory research in the diagnosis of rubella infection.

About the Authors

S. G. Mardanly
State University of Humanities and Technology; Closed Joint Stock Company «EKOlab»
Russian Federation

Seyfaddin G. Mardanly - Dr. Sci. (Med.), Professor of Department of Pharmacology and Pharmaceutical Disciplines at State University of Humanities and Technology; President and Director of science of Closed Joint Stock Company «EKOlab».

Orekhovo-Zuevo; Elektostal.

+7(49643) 3-13-74, 3-17-45, 3-35-29


A. S. Avdonina
Closed Joint Stock Company «EKOlab»
Russian Federation

Alexandra S. Avdonina - Head of Advanced Development Department of Closed Joint Stock Company «EKOlab».

Elektostal.

+7(49643)3-13-74, 3-17-45, 3-35-29



References

1. Nozdracheva AV, Semenenko TA, Mardanly SG, et al. Evaluation of intensity of humoral immunity to meals and rubella in pregnant women in Moscow. Journal of microbiology, epidemiology and immunobiology. 2017;3:91-98. (In Russ). doi:10.36233/0372-9311-2017-3-91-98.

2. Rubella. WHO Newsletter. October 2019. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/rubella. Accessed: 05.06.2020.

3. Mardanly SG. Epidemiologicheskiy nadzor za infektsiyami TORCH-gruppy na osnove sovremennykh tekhnologiy laboratornoy diagnostiki [dissertation]. Moscow; 2016. (In Russ).

4. Mardanly SG, Simonova YeG, Simonov VV. Infektsii ToRCH-gruppy: klinicheskaya laboratornaya diagnostika, epidemiologicheskiy nadzor i kontrol'. Orekhovo-Zuyevo: Izdatel'stvo GGTU; 2018. (In Russ).

5. Best JM, O'Shea S, Tipples G, et al. Interpretation of rubella serology in pregnancy - pitfalls and problems. BMJ. 2002;325:147-148. doi: 10.1136/bmj.325.7356.147.

6. Dwyer DE, Robertson PW, Fields PR. Broadsheet: clinical and laboratory features of rubella. Pathology. 2001;33:322-8. doi: 10.1080/00313020126300.

7. Aboudy Y, Barnea B, Yosef L, et al. Clinical rubella reinfection during pregnancy in a previously vaccinated woman. J. Infect. 2000;41:187-9. doi: 10.1053/jinf.2000.0716.

8. Morgan-Capner P, Hodgson J, Hambling MH, et al. Detection of rubellaspecific IgM in subclinical rubella reinfection in pregnancy. Lancet. 1985;1:244-6. doi: 10.1097/00006254-198509000-00006.

9. Al-Nakib W, Best JM, Banatvala JE. Rubella-specific serum and nasopharygeal immunoglobulin responses following naturally acquired and vaccine-induced infection. Prolonged persistence of virus-specific IgM. Lancet. 1975;1:182-5. doi: 10.1016/s0140-6736(75)91356-2.

10. Banatvala JE, Best JM, O'Shea S, et al. Persistence of rubella antibodies after vaccination: detection after experimental challenge. Rev. Infect. Dis. 1985;1(7):86-90. doi: 10.1093/clinids/7.supplement_1.s86.

11. Pattison JR. Persistence of specific IgM after natural infection with rubella virus. Lancet. 1975;1:185-7. doi: 10.1016/s0140-6736(75)91357-4.

12. Wandinger K-P, Saschenbrecker S, Steinhagen K, et al. Diagnosis of recent primary rubella virus infections: Significance of glycoprotein-based IgM serology, IgG avidity and immunoblot analysis. Journal of Virological Methods. 2011;174(1-2):85-93. doi: 10.1016/j.jviromet.2011.04.001.

13. Meurman OH, Ziola BR. IgM-class rheumatoid factor interference in the solid-phase radioimmunoassay of rubella-specific IgM antibodies. J. Clin. Pathol. 1978;31:483-7. doi: 10.1136/jcp.31.5.483.

14. Morgan-Capner P, Tedder RS, Mace JE. Rubella-specific IgM reactivity in sera from cases of infectious mononucleosis. J. Hyg. (Lond). 1983;90:407-13. doi: 10.1017/s0022172400029041.

15. Thomas HI, Barrett E, Hesketh LM, et al. Simultaneous IgM reactivity by EIA against more than one virus in measles, parvovirus B19 and rubella infection. J. Clin. Virol. 1999;14:107-18. doi: 10.1016/s1386-6532(99)00051-7.

16. Tipples GA, Hamkar R, Mohktari-Azad T, et al. Evaluation of rubella IgM enzyme immunoassay. J. Clin. Virol.2004;30:233-38. doi: 10.1016/j.jcv.2003.11.006.

17. Chaye HAH, Mauracher ChA, Tingle AJ, et al. Cellular and Humoral Immune Responses to Rubella Virus Structural Proteins El, E2, and C. Journal of Clinical Microbiology. 1992;30:2323-29. doi: 10.1016/s0016-5085(98)85023-3.

18. Cusi MG, Metelli R, Valensin PE. Immune responses to wild and vaccine rubella viruses after rubella vaccination. Arch. Virol. 1989;106:63-72. doi: 10.1007/bf01311038.

19. Dimech W, Grangeot-Keros L, Vauloup-Fellousb Ch. Standardization of Assays That Detect Anti-Rubella Virus IgG Antibodies. Clinical Microbiology Reviews. 2016;29(1):163-74. doi:10.1128/cmr.00045-15.

20. Mauracher CA, Mitchell LA, Shukin R, et al. pH-dependent solubility shift of rubella virus capsid protein. Virology. 1991;181:773-7. doi: 10.1016/0042-6822(91)90916-y.

21. Nedeljkovic J, Jovanovic T, Mladjenovic S, et al. Immunoblot analysis of natural and vaccine-induced IgG responses to rubella virus proteins expressed in insect cells. J. Clin. Virology. 1999;14(2):119-31. doi: 10.1016/s1386-6532(99)00048-7.

22. Serdula MK, Halstead SB, Wiegenga NH, et al. Serological response to rubella revaccination. JAMA. 1984;251:1974-77. doi: 10.1001/jama.251.15.1974.

23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5. doi: 10.1038/227680a0.

24. Arsen'yeva VA, Amelina YeA, Mardanly SG, et al. Linear immunoblotting for simultaneous detection of antibodies to main pathogens of TORCH-infection. Medical alphabet. 2017;2,20(317):43-48. (In Russ.).

25. Antonov VS. Questions of statistical evaluation of the results of clinical trials of medical products for in vitro diagnostics (in Russ.). Available at: https://docplayer.ru/118768-Voprosy-statisticheskoy-ocenki-rezultatov-klinicheskih-ispytaniy-medicinskih-izdeliy-dlya-in-vitro-diagnostiki-antonov-v-s-zamestitel-generalnogo.html. Accessed: 05.06.2020.

26. Chernov VI, Yesaulenko IE, Rodionov OV, et al. Meditsinskaya informatika: Ucheb. Posobiye [Medical Informatics: Textbook]. Rostov on Don: Phoenix; 2007.

27. Dorsett PH, Miller DC, Green KY, et al. Structure and function of the rubella virus proteins. Rev. Infect. Dis. 1985;7:150-6. doi: 10.1093/clinids/7.supplement_1.s150.

28. Petterson RF, Oker-Blom C, Kalkkinen N, et al. Molecular and anti-genic characteristics and synthesis of rubella virus structural proteins. Rev. Infect. Dis. 1985;7:140-9. doi: 10.1093/clinids/7.supplement_1.s140

29. Oker-Blom C, Kalkkinen N, Kaariainen L, et al. Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a and E2b. J. Virol. 1983;46:964-73.


Review

For citations:


Mardanly S.G., Avdonina A.S. Development and Investigation of Diagnostic Efficiency of a Test Kit for the Detection of IgM-antibodies to Individual Antigens of Rubella Virus by Immunoblotting (Western Blot). Epidemiology and Vaccinal Prevention. 2020;19(3):57-63. (In Russ.) https://doi.org/10.31631/2073-3046-2020-19-3-57-63

Views: 690


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)