Common Features of Coronavirus and Influenza Pandemics and Surface Proteins of their Pathogens. Parallels
https://doi.org/10.31631/2073-3046-2021-20-4-4-18
Abstract
Relevance. Coronaviruses and influenza viruses induce pandemics taking away many human lives and seeding social-economic chaos. Possibility to prognose pandemic features on characteristics of surface proteins of their pathogens is not investigated.
Aim is to characterize the common features of the pandemic coronavirus S-protein and the pandemic virus influenza hemagglutinin in connection with the features of a coronavirus pandemic and influenza pandemics.
Materials and method. For the bioinformatic analysis the protein sequences of pandemic coronavirus strains and pandemic influenza virus strains, influenza virus strains of 2017–2018 season and also influenza virus type B strains were used. In proteins an amino acid content, the sums of the charged amino acids and the.
Results. It was found out that the increase of amount of the amino acids forming intrinsically disordered regions in the coronavirus S-protein S1 subunit and influenza virus H1 hemagglutinin HA1 subunit is characteristic of the pandemics with high morbidity and the increase of arginine and lysine with comparison with aspartic and glutamic acids in those proteins is peculiar to viruses inducing the pandemics with lower lethality.
Conclusion. The features (morbidity and lethality) of the coronavirus pandemic and influenza virus pandemic are associated with the quantitative amino acids content of pandemic virus surface proteins.
About the Author
E. P. KharchenkoRussian Federation
Kharchenko Eugene P., Dr. Sci. (Biol.), leader researcher
44 Toreza pr., St. Petersburg, Russian Federation,194223
+7 (812) 552-70-31
References
1. van der Lee R., Buljan M., Lang B., Weatheritt R. J. et al. Classification of Intrinsically Disordered Regions and Proteins. | Chem. Rev. 2014, 114, 6589−6631. doi:10.1021/cr400525m.
2. Kharchenko EP. The Coronavirus SARS-Cov-2: the characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiology and Vaccinal Prevention. 2020;19(2):13–30. https://doi: 10.31631/2073-3046-2020-19-2-13-30.
3. Kharchenko E. P. The Spanish influenza virus: treats to the portrait after 100 years // Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2018, vol. 8, no. 3, pp. 325–334. doi: 10.15789/2220-7619-2018- 3-325-334
4. Kharchenko E. P. The invariant patterns of the internal proteins of pandemic influenza viruses // Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2015, vol. 5, no. 4, pp. 323–330. doi: 10.15789/2220-7619-2015-4-323-330.
5. Morens D.M., Taubenberger J.K. Pandemic influenza: certain uncertainties. Rev. Med. Virol., 2011, vol. 21, pp. 262–284.doi: 10.1002/rmv.689 6. McCallum M. , Bassi J., De Marco A., Chen A. et SARS- al. CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science 2021 doi: 10.1126/science.abi7994.
6. Andreano E., Piccini G., Licastro D., Casalino L., et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv/preprint, doi: 10.1101/2020.12.28.424451.
7. Johnson W.E. Endogenous Retroviruses in the Genomics Era. //Annu. Rev. Virol. 2015. Vol.2, P. 135–159. doi: 10.1146/annurev-virology-100114-054945.
8. Jachiet P.A., Colson P., Lopez P., Bapteste E. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol. Evol. //2014. Vol. 6, N. 9. P. 2195–2205. doi:10.1093/gbe/evu168.
9. Stedman K. M. Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes. // Annu. Rev. Virol. 2015. Vol. 2, P. 203–217. doi: 10.1146/annurevvirology-100114-055127.
10. Wang WK, Chen M.Y., Chuang C.Y., Jeang K.T., Huang L.M. Molecular biology of human immunodeficiency virus type 1.J Microbiol Immunol Infect. 2000 ;33(3):131-40.
11. Ke Z., Oton J., Qu K., Cortese M. et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020. doi:10.1038/s41586-020-2665-2
12. Wang L, Zhou T, Zhang Y, Yang ES, Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science. 2021. doi: 10.1126/science.abh1766.
13. Dolgin E. Nature Biotechnology 2021; Vol 39 , Р: 783–785. doi:10.1038/s41587-021-00980-x.
14. Kwong P.D. ., Mascola J.R. HIV-1 Vaccines based on antibody identification, b cell ontogeny, and epitope structure. // Immunity. 2018. Vol. 48, N 5. P. 855-871. doi: 10.1016/j.immuni.2018.04.029.
15. Burton DR. Advancing an HIV vaccine advancing vaccinology. // Nat Rev Immunol. 2019 . Vol. 19. N 2. P. 77–78. doi: 10.1038/s41577-018-0103-6.
16. Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. // Nat Immunol. 2018. Vol. 19, N 11. P. 1179–1188. doi: 10.1038/s41590-018-0235-7.
17. Andrabi R, Bhiman J.N., Burton D.R. Strategies for a multi-stage neutralizing antibody-based HIV vaccine. // Curr Opin Immunol. 2018. Vol. 53. . P. 143–151. doi: 10.1016/j.coi.2018.04.025.
18. Bajic G., van der Poel C.E., Kuraoka M. et al. Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies. // Sci Rep. 2019. Vol. 9, N 1. P. 3492. doi:10.1038/s41598-019-40175-8.
19. Kharchenko EP. Vaccines against Covid-19: comparison, limitations, the decrease of pandemic and the perspective of viral respiratory diseases. Epidemiology and Vaccinal Prevention. 2020;20(1): 4–19 (In Russ.). https://doi: 10.31631/2073-3046-2020-20-1-4-19.
20. Kharchenko EP. The Coronavirus SARS-Cov-2: the Complexity of Infection Pathogenesis, the Search of Vaccines and Possible Future Pandemics. Epidemiology and Vaccinal Prevention. 2020;19(3):4–20. (In Russ.). https://doi: 10.31631/2073-3046-2020-19-3-4-20.
21. https://assets.publishing.service.gov.uk. Can we predict the limits of SARS-CoV-2 variants and their phenotypic consequences?
22. Puranik A. , Lenehan P. J., Silvert E., Niesen M.J.M. et al. Comparison of two highly-effective mRNA vaccines for COVID-19 during periods of Alpha and Delta variant prevalence. Doi:10.1101/2021.08.06.21261707;
23. Riemersma K. K., Grogan B.E., Kita-Yarbro A., Halfmann P., et al. Shedding of Infectious SARS-CoV-2 Despite Vaccination when the Delta Variant is Prevalent - Wisconsin, July 2021. Doi: 10.1101/2021.07.31.21261387.
24. Maxmen A. COVID boosters for wealthy nations spark outrage. Nature. 2021. doi.org/10.1038/d41586-021-02109-1.
Review
For citations:
Kharchenko E.P. Common Features of Coronavirus and Influenza Pandemics and Surface Proteins of their Pathogens. Parallels. Epidemiology and Vaccinal Prevention. 2021;20(4):4-18. (In Russ.) https://doi.org/10.31631/2073-3046-2021-20-4-4-18