Preview

Epidemiology and Vaccinal Prevention

Advanced search

Features of Microbiocenoses of Various Biotopes in Women as Potential Miscarriage Risk Factor

https://doi.org/10.31631/2073-3046-2021-20-5-107-114

Abstract

Relevance. Miscarriage is one of the most common obstetric pathologies that determine the spontaneous death of the fetus. The role of changes in the microbiome of various biotopes is considered as a risk factor of this disease.

Aim of the research is to assess the microbiocenoses structure of the reproductive system and the intestine associated with the development of spontaneous miscarriages in early pregnancy.

Materials and methods. A case-control study was conducted and organized. The group of «cases» included 23 women with spontaneous miscarriage at 5–14 weeks of pregnancy and the control group included 23 women with normal pregnancies Based on the data of metagenomic sequencing of V3–V4 regions of the 16S rRNA gene, a comparative assessment of the structure of the vaginal and intestinal microbiome in these groups was carried out.

Results. As a result of the study, a number of taxonomic groups of microorganisms in the vagina and intestines associated with miscarriage. It was found that the decrease in the proportion of Lactobacillus spp. in the structure of the vaginal microbiome, less than 90% of the total number of identified taxa is associated with this pathology (OR = 5.28 (95% CI = 1.2-23.2)). The gut microbiocenoses of women with spontaneous miscarriage are characterized by less taxonomic diversity than the gut microbiome of women with advanced pregnancy. At the same time, some representatives of the intestinal microbiome (Akkermansia sp., Faecalibacterium sp., Bifidobacterium sp., Methanobrevibacter sp., Lactococcus sp.) predominate in women with a normal pregnancy.

Conclusion. The study demonstrated a significant role of changes in microbiocinosis of the reproductive tract and intestines in miscarriage. There is a potentially protective function of lactobacilli. The obtained data substantiates the need for active use of molecular genetic methods focused on the assessing the structure of the vaginal and intestinal microbiota in assessing the risks of reproductive failures.

About the Authors

A. E. Goncharov
Institute of experimental medicine; North-Western State Medical University named after II Mechnikov; Saint Petersburg State University
Russian Federation

Artemy E. Goncharov – Dr. Sci. (Med.) Head of laboratory of functional genomics and proteomics of microorganisms. Head of Laboratory of Innovative
Methods of Microbiological Monitoring; Professor at the Department of Epidemiology, Parasitology and Disinfectology; Associate Professor of the
Department of Fundamental Problems of Medicine and Medical Technologies

12, Akademika Pavlova Street, St. Petersburg, 197376; 41, Kirochnaya
Street St. Petersburg, 191015;  199034, St. Petersburg, Universitetskaya emb., 7-9.



S. V. Rischuk
North-Western State Medical University named after II Mechnikov
Russian Federation

Sergey V. Rischuk – Dr. Sci. (Med.), professor, department of obstetrics and
gynecology named S. N. Davydova

41, Kirochnaya Street St. Petersburg, 191015



B. I. Aslanov
North-Western State Medical University named after II Mechnikov
Russian Federation

Batyrbek I. Aslanov  – Dr. Sci. (Med.), Professor at the Department of Epi- demiology, Parasitology and Disinfectology

41, Kirochnaya Street St. Petersburg, 191015



E. A. Lebedeva
North-Western State Medical University named after II Mechnikov; Institute of experimental medicine
Russian Federation

Ekaterina A. Lebedeva  – assistant at the Department of Epidemiology,
Parasitology and Disinfectology; Researcher, Laboratory of Innovative Methods of Micro- biological Monitoring, Scientific and educational center r «Molecular bases of  interaction of microorganisms and human» 

41, Kirochnaya Street Saint-Petersburg, 191015; 12, Akademika Pav- lova Street, St. Petersburg, 197376

+7 (812)544-22-94



D. V. Azarov
North-Western State Medical University named after II Mechnikov; Institute of experimental medicine
Russian Federation

Daniil V. Azarov – assistant at the Department of Epidemiology, Parasitology
and Disinfectology; Researcher, Laboratory of Innovative Methods of Microbiological Monitoring, Scientific and educational center «Molecular bases of interaction of microorganisms and human»

41, Kirochnaya Street St. Petersburg, 191015; 12, Akademika Pavlova Street, St. Petersburg, 197376

 +7 (812)544-22-94



A. S. Mokhov
City Mariinsky Hospital; North-Western State Medical University named after II Mechnikov; Institute of experimental medicine
Russian Federation

Alexey S. Mokhov – PhD student of departament of Epidemiology, Parasi- tology and Disinfectology;  bacteriologist;  Researcher, Laboratory of Inno- vative Methods of Microbiological Monitoring, Scientific and educational
center «Molecular bases of interaction of microorganisms and human»

41, Kirochnaya Street St. Petersburg, 191015; 56 Liteyny prospert, St. Petersburg, 191104; 12, Akademika Pavlova Street, St. Petersburg, 197376

+7  (921)655-84-70

 



Yu. A. Artemova
City polyclinic № 17
Russian Federation

Yulia A. Artemova – Head of Women’s Clinic No. 9

195176, St. Petersburg, 56 Metalistov Ave

+7 (952) 266-48-52



M. V. Tabolkina
City polyclinic № 44
Russian Federation

Maria V. Tabolkina – Head of Women’s Clinic №. 19

192071, St. Petersburg, st. Budapest, 20.

+7 (911) 938-38-30



A. A. Meltser
City Mariinsky Hospital
Russian Federation

Alexandra А. Meltser – bacteriologist

 56 Litey- ny prospert, St. Petersburg, 191104

+7(921)397-73-32



T. V. Osmirko
North-Western State Medical University named after II Mechnikov
Russian Federation

Tatyana V. Osmirko – Cand. Sci. (Med.), associate professor of the Department of Epidemiology, Parasitology and Disinfection

41, str. Kirochnaya, St. Petersburg, 191015

+79216407791



A. V. Tushina
City Hospital of St. Great Martyr George
Russian Federation

Anastasia V. Tushina – obstetrician-gynecologist

194354, St. Petersburg, Northern Avenue 1

+7 (921) 776-81-41



References

1. Wang X, Chen C, Wang L, et al. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril. 2003;79(3):577-84. https://doi:10.1016/s0015-0282 (02) 04694-0.

2. Larsen EC, Christiansen OB, Kolte AM, et al. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154-65. https://doi: 10.1186/1741-7015-11-154.

3. Hillier SL, Nugent RP, Eschenbach DA, et al. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. The Vaginal Infections and Prematurity Study Group. N Engl J Med. 1995; 333(26):1737-1742. https://doi: 10.1056/NEJM199512283332604.

4. Moore DE, Soules MR, Klein NA, et al. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil Steril. 2000;74(6):1118-1124. https://doi:10.1016/S0015- 0282(00)01624-1.

5. Hyman RW, Herndon CN, Jiang H, et al. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J Assist Reprod Genet. 2012; 29(2):105-115. https:// doi:10.1007 /s10815-011-9694-6.

6. Hyman RW, Fukushima M, Jiang H, et al. Diversity of the vaginal microbiome correlates with preterm birth. Reprod Sci. 2014; 21(1):32-40. https://doi:10,1177 / 1933719113488838.

7. Sobel JD. Vaginitis. N Engl J Med. 1997;337(26):1896-1903. https://doi:10.1056/NEJM199712253372607.

8. Cicinelli E, Matteo M, Tinelli R, et al. Chronic endometritis due to common bacteria is prevalent in women with recurrent miscarriage as confirmed by improved pregnancy outcome after antibiotic treat- ment. Reprod Sci. 2014; 21(5):640-647. https://doi:10.1177/1933719113508817.

9. Gevers D, Knight R, Petrosino JF, et al. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol. 2012; 10(8):e1001377. https://doi:10.1371/journal. pbio.1001377.

10. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome medicine. 2016;8(1):1-11. https://doi:10.1186/s13073-016-0307-y

11. Anderson G. Endometriosis pathoetiology and pathophysiology: roles of vitamin A, estrogen, immunity, adipocytes, gut microbiome and melatonergic pathway on mitochondria regulation. Biomolecular concepts. 2019;10(1): 133-149. https://doi:10.1515/bmc-2019-0017.

12. Magoč T., Salzberg S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957-2963. https://doi:10.1093/bioinformatics/btr507.

13. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857. https://doi:10.1038/s41587-019-0209-9.

14. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high‐resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581‐583. https://doi:10.1038/nmeth.3869.

15. .

16. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018; 6(1):1-17. https://doi:10.1186/s40168-018-0470-z.

17. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6: 610‐618. https:// doi:10.1038/ismej.2011.139.

18. Faith DP. Conservation evaluation and phylogenetic diversity. Biol Cons. 1992;61:1‐10. https://doi:10.1016/0006-3207(92)91201-3.

19. Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A. 2011;108:4680–4687. https://doi:10.1073/pnas.1002611107.

20. Spear GT, French AL, Gilbert D, et al. Human alpha‐amylase present in lower‐genital‐tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus. J Infect Dis. 2014; 210(7):1019–1028. https://doi:10.1093/infdis/ jiu231.

21. Smith S. B., Ravel J. The vaginal microbiota, host defence and reproductive physiology. The Journal of physiology. 2017; 595(2):451-463. https://doi:10.1113/JP271694.

22. Wira CR, Fahey JV, Sentman CL, et al. Innate and adaptive immunity in female genital tract: cellular responses and interactions. Immunol Rev. 2005; 206(1):306–335. https://doi:10.1111/j.0105- 2896.2005.00287.x.

23. Petricevic L, Domig KJ, Nierscher FJ, et al. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep. 2014;4(1):1-6. https://doi:10.1038/srep05136.

24. Santacruz A, Collado MC, Garcia-Valdes L, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. The British Journal of Nutrition. 2010;104(1):83-92. https://doi:10.1017 / S0007114510000176.

25. Cani PD, Osto M, Geurts L, et al. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279-288. https:// doi:10.4161/gmic.19625.

26. Koren O, Goodrich JK, Cullender TC, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150(3):470-80. https://doi: 10.1016/j.cell.2012.07.008.


Review

For citations:


Goncharov A.E., Rischuk S.V., Aslanov B.I., Lebedeva E.A., Azarov D.V., Mokhov A.S., Artemova Yu.A., Tabolkina M.V., Meltser A.A., Osmirko T.V., Tushina A.V. Features of Microbiocenoses of Various Biotopes in Women as Potential Miscarriage Risk Factor. Epidemiology and Vaccinal Prevention. 2021;20(5):107-114. (In Russ.) https://doi.org/10.31631/2073-3046-2021-20-5-107-114

Views: 800


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)