Preview

Epidemiology and Vaccinal Prevention

Advanced search

The Development of ELISA-test System for Detection of Specific IgG to SARS-COV-2 Coronavirus by Immunoblotting (Line Blot)

https://doi.org/10.31631/2073-3046-2022-21-4-103-112

Abstract

Relevance. The problem of timely and effective diagnosis of COVID-19 remains one of the main problems facing healthcare. In this regard, the task of developing test systems for the etiological diagnosis of COVID-19 remains extremely relevant. Purpose To develop ELISA test system for detection of G specific immunoglobulins to SARS-COV-2 coronavirus by immunoblotting (Line Blot). Methods. Elaboration of techniques for obtaining test components and preliminary assessment of its diagnostic effectivenessin blood serums from COVID-19 patients treated at N. I. Pirogov First Gradsky Hospital, Moscow, and serums from healthy human donors. Results. The study of 104 blood serum samples from COVID-19 patients and 100 blood serum samples from healthy human donors, pre-tested by ELISA IgG to SARS-CoV-2 using «Vitrotest SARS-CoV-2 IgG» test systems (Vitrotest, Ukraine) and «ELISA-SARS-CoV-2-AB-G» (CJSC EKOlab, Russia) showed high diagnostic efficiency of the new test system. Conclusion. The new test system after state registration of the medical device can be recommended as a confirmatory test for the etiological laboratory diagnosis of COVID-19.

About the Authors

S. G. Mardanly
State University of Humanities and Technology; Closed Joint Stock Company EKOlab (CJSC EKOlab)
Russian Federation

Seyfaddin G. Mardanly – Dr. Sci. (Med.), Academician of the Russian Academy of Medical Technical Sciences; Professor at the Department of Pharmacology and Pharmaceutical Sciences; Science Director

+7 (909) 992-14-94

Orekhovo-Zuevo

Elektrogorsk, Moscow region



T. V. Popova
Closed Joint Stock Company EKOlab (CJSC EKOlab)
Russian Federation

Tatyana V. Popova – Cand. Sci. (Chemical), Professor, Head of the Department of Pharmacology and Pharmaceutical Disciplines, Faculty of Pharmacy

22, Zelenaya Street, Orekhovo-Zuevo, Moscow Region, 142611

+7 (965) 328-23-58

Elektrogorsk, Moscow region



References

1. Vremennye metodicheskie rekomendacii MZ RF (Versija 11 ot 07.05.2021). «Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19)». Available at: http:.xn--80aesfpebagmfblc0a.xn--p1ai/ai/doc/872/attach/Bmr_COVID-19_compressed.pdf. Accessed: 24.02.2022 (In Russ).

2. Diagnosticheskoe testirovanie dlja opredelenija virusa SARS-CoV-2: Vremennye rekomendacii, 11 sentjabrja 2020 g. Available at: https:.www.euro.who.int/ru/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/2020/diagnostic-testing-for-sars-cov-2-interim-guidance,-11-september-2020. Accessed: 24.02.2022. (In Russ).

3. Ozcurumez M, Ambrosch A, Frey O, et al. SARS-CoV-2 antibody testing — questions to be asked. J Allergy Clin Immunol. 2020; 146(1):35–43. DOI: 10.1016/j.jaci.2020.05.020.

4. Sethuraman N, Stanleyraj S, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020; 323(22): 2249-51. DOI: 10.1001/jama.2020.8259.

5. Watson J, Richter A, Deeks J. Testing for SARS-CoV-2 antibodies. BMJ. 2020;370:m3325. DOI: 10.1136/bmj.m3325.

6. Du Z, Zhu F, Guo F, et al. Detection of antibodies against SARS-CoV-2in patients with COVID-19. J Med Virol. 2020; 92(10):1735–8. DOI: 10.1002/jmv.25820.

7. La Marca A, Capuzzo M, Paglia T, et al. Test-ing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reprod Biomed Online. 2020;41(3):483–99. DOI: 10.1016/j.rbmo.2020.06.001.

8. McAndrews KM, Dowlatshahi DP, Dai J, et al. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight. 2020; 5(18): e142386, 1–14. DOI: 10.1172/jci.insight.142386.

9. Sethuraman N, Stanleyraj S, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020; 323 (22): 2249–51. DOI: 10.1001/jama.2020.8259

10. Haselmann V, Özçürümez MK, Klawonn F, et al. Results of the first pilot external quality assessment (EQA) scheme for anti- SARS-CoV2-antibody testing. Clin Chem Lab Med. 2020; 58(12): 2121–30. DOI: 10.1515/cclm-2020-1183

11. Mardanly SG, Avdonina AS, Mamedova SG. Development of an enzyme immunoassay system for the detection of IgG class antibodies to the COVID-19 pathogenin human serum (plasma). Klinicheskaja laboratornaja diagnostika. 2020; 65 (11): 683–7 (In Russ). DOI 10.17116/klinderma202019041465

12. Mardanly SG. Development and testing of new enzyme immunoassay systems for the diagnosis of toxoplasmosis. Klinicheskaja laboratornaja diagnostika 2009; 2: 35–7 (In Russ).

13. Mardanly SG. Epidemiological surveillance of TORCH group infections based on modern laboratory diagnostic technologies. [dissertation]. Moscow; 2016. Available at: http:.www.dslib.net/epidemiologia/jepidemiologicheskij-nadzor-za-infekcijami-torch-gruppy-na-osnove-sovremennyh.html. Accessed: 24.02.2022 (In Russ).

14. Mardanly SG, Simonov VV, Avdonina AS. Production of reagent kits for clinical laboratory diagnostics by immunochemical methods. Orehovo-Zuevo: GGTU; 2017, 208 (In Russ).

15. Mardanly SG., Simonova EG., Simonov VV. Torch-group infections: clinical laboratory diagnostics, epidemiological surveillance and control. Moscow:Tranzit-IKS; 2018, 282 (In Russ).

16. Mardanly SG., Simonova EG., Simonov VV. Herpesvirus infections: etiology and pathogenesis, clinic and laboratory diagnostics, epidemiology and prevention. Orehovo-Zuevo: GGTU; 2020, 316 (In Russ).

17. Hui Penga, Li-tao Yanga, Ling-yun Wangb, et al. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid proteinin SARS-recovered patients. Virology. 2006; 351: 466–75

18. Hiscox JA, Wurm T, Wilson L, et al. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J Virol. 2001; 201: 506–12. DOI: 10.1128/JVI.75.1.506–512.2001

19. Narayanan K, Chen CJ, Maeda J, Makino S. Nucleocapsid independent specific viral RNA packaging via viral envelope protein and viral RNA signal. J Virol. 2003; 77: 2922–27. DOI: 10.1128/jvi.77.5.2922–2927.2003

20. Ning Wang, Jian Shang, Shibo Jiang, Lanying Du. Subunit vaccines against emerging pathogenic human coronaviruses. Front Microbiol. 2020; 11: 298. DOI: 10.3389/fmicb.2020.00298

21. Brouwer PhJM, Caniels TG., van der Straten K, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 2020; 369: 643–50. DOI: 10.1126/science.abc5902

22. Rui Shi, Chao Shan, Xiaomin Duan , et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020; 584: 120–4. DOI: 10.1038/s41586-020-2381-y

23. Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interactionin infected cells. J Virol. 2000; 74(17): 8127–34. DOI: 10.1128/jvi.74.17.8127–8134.2000

24. Opstelten DJ, Raamsman MJ, Wolfs K, et al. Envelope glycoprotein interactionsin coronavirus assembly. J Cell Biol. 1995; 131(2): 339–49. DOI: 10.1083/jcb.131.2.339

25. Jun Liu, Yeping Sun, Jianxun Qi, et al. The Membrane Protein of Severe Acute Respiratory Syndrome Coronavirus Acts as a Dominant Immunogen Revealed by a Clustering Region of Novel Functionally and Structurally Defined Cytotoxic T-Lymphocyte Epitopes. J Infect Dis. 2010; 202(8): 1171–80. DOI: 10.1086/656315

26. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. J Virol. 2019; 16 (1): 69. DOI: 10.1186/s12985-019-1182-0


Review

For citations:


Mardanly S.G., Popova T.V. The Development of ELISA-test System for Detection of Specific IgG to SARS-COV-2 Coronavirus by Immunoblotting (Line Blot). Epidemiology and Vaccinal Prevention. 2022;21(4):103-112. (In Russ.) https://doi.org/10.31631/2073-3046-2022-21-4-103-112

Views: 372


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)