Preview

Epidemiology and Vaccinal Prevention

Advanced search

Approaches to Vaccination of Patients with Diabetes Mellitus and Obesity in the Current Epidemiological Situation

https://doi.org/10.31631/2073-3046-2022-21-4-119-124

Abstract

Relevance. To date, there is ample evidence that diabetes mellitus (DM) and obesity are predictors of a severe course and adverse outcome of COVID-19. The SARS-CoV-2 virus is known to have deleterious effects on the pancreas, exacerbating insulin resistance The SARS-CoV-2 virus is known to have deleterious effects on the pancreas, exacerbating insulin resistance. Long-term data have been accumulated regarding pneumococcal infection and influenza, both of which are severe in patients with diabetes and obesity. The aim is to analyze scientific publications on the problems of vaccinating patients with diabetes and obesity against SARS-CoV-2, pneumococcal infection, and influenza. Conclusions. Vaccination against COVID-19 in patients with DM and obesity is an effective preventive measure. Experience with vaccination against COVID-19 using the following vaccines: Moderna mRNA-1273, Pfizer BioNTech, BNT162b2, AstraZeneca COVID-19 vaccine AZD1222, SII Covishield, SK Bioscience, Sputnik V showed similar safety and efficacy profiles among obese and DM patients and those at risk. Researchers in numerous publications have emphasized the importance of routine vaccination for people living with diabetes amid a pandemic of a new coronavirus infection. Researchers in numerous publications have emphasized the importance of routine vaccination for people living with diabetes in the face of a new coronavirus pandemic. Analysis of the literature reviewed in this review suggests that vaccination against SARS-CoV-2, especially for those at risk, will be an intensive area of research in the coming years and that vaccination against coronavirus infection is likely to be routine for people with diabetes and obesity.

About the Authors

A. А. Tarasova
Privolzhsky Research Medical University
Russian Federation

Alla А. Tarasova – Dr. Sci. (Med.), professor of faculty and polyclinic pediatrics department

10/1, Minin and Pozharsky Sq., Nizhny Novgorod, 603950

Nizhny Novgorod



M. P. Kostinov
I. Mechnikov Research Institute of Vaccines and Sera; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Mikhail P. Kostinov – corresponding member RAS, Doctor of Medical Sciences, Professor, Head of the Laboratory of Vaccine Prevention and Immunotherapy of Allergic Diseases; Head of the Department of Epidemiology and Modern Technologies of Vaccination, Institute of Vocational Education

Moscow



V. V. Mescheriakova
Privolzhsky Research Medical University
Russian Federation

Vera V. Meshcheryakova – Cand. Sci. (Med.), Associate Professor of the Department of Faculty and Polyclinic Pediatrics

Nizhny Novgorod



M. A. Kvasova
Privolzhsky Research Medical University
Russian Federation

Maria Alexandrovna Kvasova – Cand. Sci. (Med.), Associate Professor of the Department of Faculty and Polyclinic Pediatrics 

Nizhny Novgorod



T. A. Smirnova
Privolzhsky Research Medical University
Russian Federation

Taisiya Andreevna Smirnova – student of the Faculty of Dentistry

Nizhny Novgorod



References

1. Belikina D.V., Malysheva E.S., Petrov A.V., et al. COVID-19 in Patients with Diabetes: Clinical Course, Metabolic Status, Inflammation, and Coagulation Disorder. Sovremennye tehnologii v medicine. 2020; 12(5): 6–18 (In Russ). http://dx.doi.org/10.17691/stm2020.12.5.01

2. Mokrysheva N.G., Galstyan G.R., Kirzhakov M.A., et al. COVID-19 pandemic and endocrinopathies. Problems of Endocrinology. 2020;66(1):7–13 (In Russ.). https://doi.org/10.14341/probl12376

3. Yang J.K., Lin S.S., Ji X.J., et al. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol. 2010;47(3):193,199. https://doi.org/10.1007/s00592-009-0109-4

4. Williamson E.J., Walker A.J., Bhaskaran K., et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. doi: https://doi.org/10.1038/s41586-020-2521-4

5. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021;44(Suppl. 1):S40–S52.

6. Zhang J.Y., Shang T., David Ahn, et al. How to Best Protect People With Diabetes From the Impact of SARS-CoV-2: Report of the International COVID-19 and Diabetes Summit. J Diabetes Sci Technol. 2021 Mar; 15(2):478–514. doi: 10.1177/1932296820978399.

7. Hussain A., Bhowmik B., do Vale Moreira N.C. COVID-19 and diabetes: knowledge in progress. Diabetes Res Clin Pract 2020; 162:108142. https://doi.org/10.1016/j.diabres.2020.108142.

8. Kotel’nikov M.V., Stukov A.I., Ganceva A.A. Jetiopatogeneticheskie svjazi ozhirenija s zabolevaemost’ju i smertnost’ju ot COVID-19. Aktual’nye problemy nauki i tehniki. Stat’ja v sbornike trudov konferencii. Sbornik nauchnyh statej po materialam V Mezhdunarodnoj nauchno-prakticheskoj konferencii. Izdatel’stvo: Obshhestvo s ogranichennoj otvetstvennost’ju «Nauchno-izdatel’skij centr «Vestnik nauki» Ufa, 2021:193–198 (in Russ).

9. Kulcsar K.A., Coleman C.M., Beck S.E., et al. Comorbid diabetes results in immune dysregulation and enhanced disease severity following MERS-CoV infection. JCI Insight 2019; 4(20): e131774, https://doi.org/10.1172/jci.insight.131774.

10. Zheng Q, Cui G, Chen J, et al. Regular exercise enhances the immune response against microbial antigens through up-regulation of toll-like receptor signaling pathways. Cell Physiol Biochem. 2015;37:735–746. doi: 10.1159/000430391.

11. Reidy PT, Yonemura NM, Madsen JH, et al. An accumulation of muscle macrophages is accompanied by altered insulin sensitivity after reduced activity and recovery. Acta Physiol. 2019;226:1–16. doi: 10.1111/apha.13251.

12. Dedov I.I., Shestakova M.V., Mayorov A.Yu., et al. Endocrinology research centre statement about COVID-19 vaccination of diabetes mellitus patients. Diabetes mellitus. 2021;24(1):74–75 (In Russ.).

13. World Health Organization. (2021). Interim recommendations for use of the Moderna mRNA-1273 vaccine against COVID-19: interim guidance, first issued 25 January 2021, updated 15 June 2021. World Health Organization. Available at.: https://apps.who.int/iris/handle/10665/341785. License: CC BY-NC-SA 3.0 IGO.

14. Interim recommendations for use of the Pfizer–BioNTech COVID-19 vaccine, BNT162b2, under Emergency Use Listing Interim guidance First issued 8 January 2021 Updated 15 June 2021. Available at.: https://apps.who.int/iris/handle/10665/341786.

15. World Health Organization. (2021). Interim recommendations for use of the ChAdOx1-S [recombinant] vaccine against COVID-19 (AstraZeneca COVID-19 vaccine AZD1222, SIICovishield, SK Bioscience): interim guidance, first issued 10 February 2021, updated 21 April 2021. World Health Organization. Available at.: https://apps.who.int/iris/handle/10665/340920. License: CC BY-NC-SA 3.0 IGO

16. World Health Organization. (2021). Interim recommendations for the use of the Janssen Ad26.COV2.S (COVID-19) vaccine: interim guidance, first issued 17 March 2021, updated 15 June 2021. World Health Organization. Available at.: https://apps.who.int/iris/handle/10665/341784. License: CC BY-NC-SA 3.0 IGO.

17. World Health Organization. (2021). Interim recommendations for use of the inactivated COVID-19 vaccine, CoronaVac, developed by Sinovac: interim guidance, 24 May 2021. World Health Organization. Available at.: https://apps.who.int/iris/handle/10665/341454. License: CC BY-NC-SA 3.0 IGO.

18. World Health Organization. (2021). Interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (CNBG), Sinopharm: interim guidance, 7 May 2021. World Health Organization. Available at.: https://apps.who.int/iris/handle/10665/341251. License: CC BY-NC-SA 3.0 IGO.

19. Annexes to the interim recommendations for use of the inactivated COVID-19 vaccine BIBP developed by China National Biotec Group (CNBG), Sinopharm Grading of evidence Evidence to recommendation tables 7 May 2021. Available at: https://apps.who.int/iris/handle/10665/34125420.

20. Background document to the WHO Interim recommendations for use of the AZD1222 (ChAdOx1-S [recombinant]) vaccine against COVID19 developed by Oxford University and AstraZeneca 1 March 2021. Available at.: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-AZD1222-GRADE-ETR-2021.1.

21. Background document to the WHO Interim recommendations for use of the inactivated COVID-19 vaccine, CoronaVac, developed by Sinovac 24 May 2021. Available at: https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE-recommendation-Sinovac-CoronaVac-GRADE-ETR

22. https://sputnikvaccine.com/.

23. Procedure for vaccination against novel coronavirus infection (COVID-19) Temporary guidelines. Ministry of Health of Russia, 2022 (in Russ). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/087/original/Methodological_recommendations_02062022_%282%29.pdf?1655803717.

24. Statement on Kidney Patient Prioritization for COVID-19 Vaccines and Therapeutics. National Kidney Foundation. Available at.: www.kidney.org

25. COVID-19 vaccination for adult patients with kidney disease: a position statement from the UK renal community. Available at.: www.kidneycareuk.org/coronavirus.

26. Kostinov M.P. Osnovy immunoreabilitacii pri novoj koronavirusnoj infekcii (COVID-19). Posobie dlja vrachej. Moscow: Gruppa MDV; 2020 (in Russ). ISBN 978-5-906748-06-5.

27. Ryzhov AA, Kostinov MP, Magarshak OO. Primenenie vakcin protiv pnevmokokkovoj i gemofil’noj tipa b infekcij u lic s hronicheskoj patologiej. Epidemiology and Vaccinal Prevention 2004;6(19):24–27 (in Russ).

28. Kostinov M.P., Tarasova A.A. Vakcinoprofilaktika pnevmokokkovoj infekcii i grippa pri autoimmunnyh zabolevanijah. Rukovodstvo dlja vrachej. Moscow: MDV, 2009. (in Russ).

29. Immunoprofilaktika pnevmokokkovyh infekcij. Uchebno-metodicheskoe posobie. M.: Remedium Privolzhje. Ed.: Briko N.I., Simonova E.G., Kostinov M.P. 2013 (in Russ).

30. Matanock A., Lee G., Gierke R., et al. Use of 13-valent pneumoco.ccal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: updated recommendations of the Advisory Committee on Immunization Practices. MMWR Morb Mortal Wkly Rep 2019;68:1069–1075.

31. Kostinov A.M., Kostinov M.P. Susceptibility of people vaccinated against S. pneumoniae to SARS-CoV-2 – mechanisms of non-specific action of pneumococcal vaccine. Pediatria n.a. G.N. Speransky. 2020;99(6):183–189 (in Russ). doi: 10.24110/0031-403X-2020-99-6-183-189

32. Kostinov A.M, Kostinov M.P., Mashilov K.V. Pnevmokokkovye vakciny i COVID-19 – antagonizm. Medicinskij sovet. 2020;17:66-73 (in Russ). doi: 10.21518/2079-701X-2020-17-66-73

33. Respiratornaja medicina. Rukovodstvo. 2nd ed. Ed.: A.G. Chuchalin T. 2. Moscow: Litterra, 2017 (in Russ).

34. Kratkie algoritmy vedenija pacientov na jetape okazanija pervichnoj mediko-sanitarnoj pomoshhi. Posobie dlja vrachej – terapevtov. M., 2019 (in Russ).

35. Rukovodstvo po klinicheskoj immunologii v respiratornoj medicine. 2nd ed. Ed.: M.P. Kostinov, A.G. Chuchalin. Moscow: Gruppa MDV; 2018 (in Russ).

36. Kostinov M.P. Svitich O.A., Markelova E.V. Potencial’naja immunoprofilaktika COVID-19 u grupp vysokogo riska inficirovanija. Vremennoe posobie dlja vrachej. Moscow: MDV;2020 (in Russ). ISBN: 978-5-906748-18-8

37. Prioritetnaja vakcinacija respiratornyh infekcij v period pandemii SARS-COV-2 i posle ee zavershenija. Posobie dlja vrachej. Ed.: M.P. Kostinov, A.G. Chuchalin. Moscow: Gruppa MDV; 2020. (in Russ). ISBN 976-5-906748-16-4.

38. Maier H, Lopez R, Sanchez N, et al. Obesity increased the duration of influenza A virus shedding in adults. J Infect Dis. 2018;218(9):1372–1382. doi: 10.1093/infdis/jiy370

39. Honce R, Karlsson EA, Wohlgemuth N, et al. Obesity-related microenvironment promotes emergence of virulent influenza virus strains. mBio. 2020;11(2):1–16. doi: 10.1128/mBio.03341-19.

40. Luzi L.,Radaelli M.G. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020 Apr 5 : 1–6. doi: 10.1007/s00592-020-01522-8

41. Kostinov M.P. Immunopathogenic properties of SARS-CoV-2 as a basis for the choice of pathogenetic therapy. Immunologiya. 2019; 41 (1): 83–91. DOI: 10.33029/0206-4952-2020-41-1-83-91 (in Russian)

42. Vallis M., Glazer S. Protecting individuals living with overweight and obesity: Attitudes and concerns toward COVID-19 vaccination in Canada. Obesity (Silver Spring). 2021 Jul; 29(7):1128–1137. doi: 10.1002/oby.23182

43. Kostinov MP. Vakcinacija detej s narushennym sostojaniem zdorov’ja. Prakticheskoe rukovodstvo dlja vrachej. izd. 3d ed. Moscow: Medicina dlja vseh; 2002 (in Russ).

44. Kostinov MP. Vakcinacija vzroslyh – ot strategii k taktike. Rukovodstvo dlja vrachej. Moscow: Gruppa MDV; 2020 (in Russ). ISBN 978-5-906748-17-1.


Review

For citations:


Tarasova A.А., Kostinov M.P., Mescheriakova V.V., Kvasova M.A., Smirnova T.A. Approaches to Vaccination of Patients with Diabetes Mellitus and Obesity in the Current Epidemiological Situation. Epidemiology and Vaccinal Prevention. 2022;21(4):119-124. (In Russ.) https://doi.org/10.31631/2073-3046-2022-21-4-119-124

Views: 478


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)