Genetic Factors for the Natural Elimination of Hepatitis C Virus
https://doi.org/10.31631/2073-3046-2023-22-2-55-65
Abstract
Relevance. The identification of determinants of the human genome, such as single nucleotide polymorphisms (SNPs), in association with various disease patterns, including infectious diseases, is one of the most actively developing areas of scientific research in the world.. Hepatitis C (HC), which remains a serious global health problem, belongs to the number of infections that attract the attention of specialists.
Aims. Determination of genetic markers of hepatitis C virus (HCV) natural elimination and assessment of their role as a monitoring parameter of the epidemiological surveillance system.
Materials and methods. The study included 660 people divided into 2 groups: persons with chronic HC (CHC) and blood donors (indicator group of the healthy population). In the studied groups, the following SNPs were typed: rs1143634, rs1143627 (IL-1B); rs4251961, rs419598 (IL1RN); rs1800795 (IL6); rs1800896 (IL-10); rs4986790 (TLR4); rs4374383 (MERTK). The associative relationship between SNPs and CHC alleles was identified using logistic regression analysis within four models (codominant, dominant, recessive, and overdominant). Additionally, the significance of polymorphisms at the intragenic and intergenic levels was assessed using modern bioinformatic resources in the field of functional genomics.
Results. In this study, genotypes associated with the natural elimination of HCV were identified. Paired combinations of IL 1RA/IL-1B genotypes associated with the probability of the formation of CHC have been established. It is shown that synonymous SNPs can be associated with any characteristics of the pathological process, which can be explained by disequilibrium in coupling with functionally significant alleles of other genetic loci.
Conclusion. The detection of the association of SNPs with clinical manifestations of the pathological process is not final and requires further study taking into account ONP coupling groups.
About the Authors
N. V. VlasenkoRussian Federation
Vlasenko Natalia V. – researcher of the laboratory of viral hepatitis Central Research Institute of Epidemiology.
Moscow
T. A. Loscutova
Russian Federation
Tatiana A. Loscutova – assistant of the laboratory of viral hepatitis.
Moscow
K. O. Mironov
Russian Federation
Konstantin O. Mironov –Dr. Sci. (Med.), head of scientific group for development of new methods of genetic polymorphisms detection, Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.
Moscow
A. S. Esman
Russian Federation
Anna S. Esman – researcher, scientific group for development of new methods of genetic polymorphisms detection.
Moscow
E. A. Dunaeva
Russian Federation
Еlena A. Dunaeva – researcher, scientific group for development of new methods of genetic polymorphisms detection.
Moscow
T. A. Semenenko
Russian Federation
Tatiana A. Semenenko – D. Sci. (Med.), Professor, Head of the Epidemiology Department.
Moscow
D. B. Dubodelov
Russian Federation
Dmitriy V. Dubodelov – Cand. Sci. (Med.), Senior Researcher at the Laboratory of Viral Hepatitis,Central Research Institute of Epidemiology.
111123, Moscow, st. Novogireevskaya d. 3a
M. I. Korabelnikova
Russian Federation
Marina I. Korabelnikova – Researcher, Laboratory of Viral Hepatitis, Central Research Institute of Epidemiology.
111123, Moscow, st. Novogireevskaya, 3a
Z. B. Ponezheva
Russian Federation
Zhanna B. Ponezheva – Dr. Sci. (Med.), Head of the Clinical Department of Infectious Pathology.
111123, Moscow, st. Novogireevskaya, 3a
V. V. Makashova
Russian Federation
Vera V. Makashova – Dr. Sci. (Med.), Professor, Leading Researcher.
111123, Moscow, st. Novogireevskaya, 3a
K. G. Omarova
Russian Federation
Khadizhat G. Omarova – Cand. Sci. (Med.), Researcher at the Clinical Department of Infectious Pathology.
111123, Moscow, st. Novogireevskaya d. 3a
A. V. Sacuk
Russian Federation
Anastasija V Sacuk – Cand. Sci. (Med.), epidemiologist «Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology».
117198, Moscow, st. Zamory Machela, 1
G. G. Solopova
Russian Federation
Galina G Solopova – Cand. Sci. (Med.), Deputy Chief Physician for Infection Control of «Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology».
117198, Moscow, st. Zamory Machela, 1
S. N. Kuzin
Russian Federation
Stanislav N. Kuzin — D. Sci. (Med.), Professor, Head, Laboratory of viral hepatitis.
Moscow
V. G. Akimkin
Russian Federation
Vasily G. Akimkin – D. Sci. (Med.), Professor, Full Member of the Russian Academy of Sciences, Director.
Moscow
References
1. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/hepatitis-c. Accessed 19 Oct 2022.
2. González-Grande R, Jiménez-Pérez M, González Arjona C, Mostazo Torres J. New approaches in the treatment of hepatitis C. World J Gastroenterol. 2016 Jan 28;22(4):1421– 32. doi: 10.3748/wjg.v22.i4.1421.
3. Baumert TF, Berg T, Lim JK, Nelson DR. Status of Direct-Acting Antiviral Therapy for Hepatitis C Virus Infection and Remaining Challenges. Gastroenterology. 2019 Jan;156(2):431–445. doi: 10.1053/j.gastro.2018.10.024.
4. EASL recommendations on treatment of hepatitis C: Final update of the series. J Hepatol 2020 Nov;73(5):1170–1218.
5. Heidrich B, Pischke S, Helfritz FA, et al. Hepatitis C virus core antigen testing in liver and kidney transplant recipients. J Viral Hepat 2014;21:769–779.
6. Freiman JM, Tran TM, Schumacher SG, et al. Hepatitis C core antigen testing for diagnosis of hepatitis C virusinfection: a systematic review and meta-analysis. Ann Intern Med 2016;165:345–355.
7. On the state of sanitary and epidemiological well-being of the population in the Russian Federation in 2021: State report. M.: Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2022. 340 p. (In Russ.).
8. Available at: https://www.itpcru.org/2021/07/27/otchet-rezultaty-monitoringa-zakupok-preparatov-dlya-lecheniya-gepatita-s-v-rossii-v-2020-godu/. Accessed 19 Oct 2022.
9. Bulteel N, Partha Sarathy P, Forrest E, et al. Factors associated with spontaneous clearance of chronic hepatitis C virus infection. J Hepatol 2016;65:266–72. doi: 10.1016/j.jhep.2016.04.030.
10. Janiak M, Caraballo Cortes K, Demkow U, et. al. Spontaneous Elimination of Hepatitis C Virus Infection. Adv Exp Med Biol. 2018;1039:45–54. doi: 10.1007/5584_2017_76.
11. Seo S, Silverberg MJ, Hurley LB, et al. Prevalence of Spontaneous Clearance of Hepatitis C Virus Infection Doubled From 1998 to 2017. Clin Gastroenterol Hepatol. 2020 Feb;18(2):511–513. doi: 10.1016/j.cgh.2019.04.035.
12. Spada E., Mele A., Berton A., et al. Multispecific T cell response and negative HCV RNA tests during acute HCV infection are early prognostic factors of spontaneous clearance. Gut. 2004; 53(11):1673–81
13. Semenenko T. Kletochny`j immunny`j otvet pri gepatite S. Virusny`e gepatity`.2000; 1: 11–17 (in Russ).
14. Neumann-Haefelin C, Thimme R. Success and failure of virus-specific T cell responses in hepatitis C virus infection. Dig Dis. 2011; 29(4):416–22. doi: 10.1159/000329807.
15. Malov S.I., Baatarkhuu Oidov, Malov I.V., et al. Genetic determination of spontaneous clearance of the hepatitis C virus in representatives of different ethnic groups. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2019. 8.(2): 8–15 (In Russ). Doi: 10.24411/2305-3496-2019-12001.
16. Jiménez-Sousa MÁ, Gómez-Moreno AZ, Pineda-Tenor D, et al. The Myeloid-Epithelial-Reproductive Tyrosine Kinase (MERTK) rs4374383 Polymorphism Predicts Progression of Liver Fibrosis in Hepatitis C Virus-Infected Patients: A Longitudinal Study. J Clin Med. 2018;7(12):473. Published 2018 Nov 23. doi:10.3390/jcm7120473
17. Cavalli M, Pan G, Nord H, et al. Genetic prevention of hepatitis C virus-induced liver fibrosis by allele-specific downregulation of MERTK. Hepatol Res. 2017;47(8):826–830. doi:10.1111/hepr.12810
18. Agúndez JA, García-Martín E, Devesa MJ, et al. Polymorphism of the TLR4 gene reduces the risk of hepatitis C virus-induced hepatocellular carcinoma. Oncology. 2012;82(1):35–40. doi:10.1159/000335606
19. Bulatova I. A., Shevlyukova T. P., Shchekotova A. P., et al. Polymorphism of cytokine genes in patients with liver cirrhosis. Therapy. 2022. - T. 8. - No. 5 (57). - S. 47–52. – DOI:10.18565/therapy.2022.5.47–52 (In Russ.).
20. Usychenko E.N. Association of cytokine genes IL-10, IL-4, TNF and fibrosis stage in patients with chronic hepatitis C. Bulletin of KazNMU. 2015. No. 4. ,p. 83–85 (in Russ).
21. Clinical guidelines «Chronic viral hepatitis C (CHC) in adults». Moscow. 2018: 90 (In Russ.). Available at: http://www.genome.gov. Accessed 19 Oct 2022.
22. Available at: https://www.snpstats.net. Accessed 19 Oct 2022.
23. Available at: http://archive. broadinstitute.org/mammals/haploreg/. Accessed 19 Oct 2022.
24. Available at: https://ldlink.nci.nih.gov/. Accessed 19 Oct 2022.
25. Available at: https://gtexportal.org/home/. Accessed 19 Oct 2022.
26. Available at: https://sift.bii.a-star.edu.sg/. Accessed 19 Oct 2022.
27. Available at: http://www.ensembl.org/index.html. Accessed 19 Oct 2022.
28. Available at: http://www.ensembl.org/index.html. Ссылка активна на 19 октября 2022.
29. Clinical psychopharmacogenetics, ed. R.F. Nasyrova, N.G. Neznanov. - St. Petersburg: DEAN Publishing House, 2019: 405 (In Russ.).
30. Nelson JE, Handa P, Aouizerat B, et al. Increased parenchymal damage and steatohepatitis in Caucasian non-alcoholic fatty liver disease patients with common IL1B and IL6 polymorphisms. Aliment Pharmacol Ther. 2016;44(11-12):1253–1264. doi:10.1111/apt.13824
31. Available at: https://www.ebi.ac.uk/gwas/. Accessed 19 Oct 2022.
32. Boggon, TJ; Shan, WS; Santagata, S; et al. (1999). Implication of tubby proteins as transcription factors by structure-based functional analysis. Science. 286 (5447): 2119–25. doi:10.1126/science.286.5447.2119. PMID 10591637.
33. Mukhopadhyay, A; Deplancke, B; Walhout, AJ; et al. (2005). C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metab. 2 (1): 35–2. doi:10.1016/j.cmet.2005.06.004. PMID 16054097.
34. Wang, Y. Seburn, K, Bechtel, L, et al. (2006). Defective carbohydrate metabolism in mice homozygous for the tubby mutation. Physiol Genomics. 27 (2):131–40. doi:10.1152/physiolgenomics.00239.2005. PMID 16849632.
35. Patin E, Kutalik Z, Guergnon J, et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology. 2012;143(5):1244–1252.e12. doi:10.1053/j.gastro.2012.07.097
36. Kabakchiev B, Silverberg MS. Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine. Gastroenterology. 2013;144(7):1488–1496.e14963. doi:10.1053/j.gastro.2013.03.001
37. Burada F, Dumitrescu T, Nicoli R, et al. IL-1RN +2018T>C polymorphism is correlated with colorectal cancer. Mol Biol Rep. 2013;40(4):2851–2857. doi:10.1007/s11033-0122300-x
38. Ghesquières H, Maurer MJ, Casasnovas O, et al. Cytokine gene polymorphisms and progression-free survival in classical Hodgkin lymphoma by EBV status: results from two independent cohorts. Cytokine. 2013;64(2):523–531. doi:10.1016/j.cyto.2013.08.002
39. Sarlos P, Kovesdi E, Magyari L, et al. Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature. World J Gastrointest Pathophysiol. 2014;5(3):304–321. doi:10.4291/wjgp.v5.i3.304
40. Baranov V.S., Ivashchenko T.E., Baranova E.V., et al. Genetic passport is the basis of individual and predictive medicine. St. Petersburg: N-L; 2009 (In Russ.).
Review
For citations:
Vlasenko N.V., Loscutova T.A., Mironov K.O., Esman A.S., Dunaeva E.A., Semenenko T.A., Dubodelov D.B., Korabelnikova M.I., Ponezheva Z.B., Makashova V.V., Omarova K.G., Sacuk A.V., Solopova G.G., Kuzin S.N., Akimkin V.G. Genetic Factors for the Natural Elimination of Hepatitis C Virus. Epidemiology and Vaccinal Prevention. 2023;22(2):55-65. (In Russ.) https://doi.org/10.31631/2073-3046-2023-22-2-55-65