Mucosal Vaccines against Bacterial and Viral Pathogens
https://doi.org/10.31631/2073-3046-2023-22-4-4-11
Abstract
The mucosal membranes of the human body play a crucial role in the development, maintenance, and regulation of barrier functions and immune homeostasis, representing an integral component of the overall immune system. Mucosal vaccines elicit immune processes in the lymphoid tissue associated with the mucosal membranes. A critical objective of mucosal immunization is the identification of an antigen delivery vector capable of ensuring optimal vaccine efficacy. The authors of this article have conducted extensive research on the probiotic properties of enterococci over an extended period. They employ a safe and beneficial probiotic strain, Enterococcus faecium L3, as a delivery vector for vaccine antigens. Initially, the gene encoding the pathogenicity factor Bac, derived from group B streptococci (Streptococcus agalactiae), was successfully integrated into the genome of the probiotic strain E. faecium L3. Intravaginal, oral, and intranasal mucosal immunization methods utilizing the L3-Bac+ probiotic, which expresses antigenic determinants of pathogenic streptococci, were found to confer protection against bacterial infection in laboratory animals. Subsequently, recombinant technologies were refined, leading to the development of a universal method for incorporating a region of interest from the gene into the structure of the major pili protein gene of E. faecium L3. Using this technology, candidate vaccines against various infections, including Streptococcus pneumoniae, influenza A virus, and SARS-CoV-2 following the onset of the Covid-19 pandemic, have been obtained and tested. In this study, alongside the presentation of our own data, the challenges associated with utilizing recombinant probiotic bacteria as vectors for vaccine antigen delivery are discussed.
About the Authors
A. N. SuvorovRussian Federation
Alexander N. Suvorov – Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences, Head of the Department of Molecular Microbiology
12, ak. Pavlov str., St-Petersburg, 197376
Т. A. Kramskaya
Russian Federation
Tatyana A. Kramskaya – Cand. Sci. (Biol.), senior researcher
St-Petersburg
T. V. Gupalova
Russian Federation
Tatyana V. Gupalova – Dr. Sci. (Biol.), leading researcher
St-Petersburg
Yu. A. Desheva
Russian Federation
Yulia A. Desheva – Dr. Sci. (Med.), leading researcher
St-Petersburg
G. F. Leontieva
Russian Federation
Galina F. Leontieva – Cand. Sci. (Biol.), leading researcher
St-Petersburg
References
1. Johansson EL, Wassén L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun. 2001;69(12):7481–6. doi:10.1128/IAI.01403-13
2. Ma Y., Luo Y., Huang X., Song F., Liu G. Construction of Bifidobacterium infantis as a live oral vaccine that expresses antigens. Microbiology. 2012;158: 498–504. doi:10.1099/mic.0.049932-0.
3. De Azevedo M, Karczewski J, Lefévre F, et al. In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin. BMC Microbiol. 2012; 12: 299. DOI: 10.1186/1471-2180-12-299
4. Laiño J., Villena J., Zelaya H., Moyano R.O., Salva S., Alvarez S., Suvorov A. Nasal immunization with recombinant chimeric pneumococcal protein and cell wall from immunobiotic bacteria improve resistance of infant mice to streptococcus pneumoniae infection. PLoS ONE. 2018;13(11):e0206661. doi: 10.1371/jornal.pone0206661
5. Грабовская К. Б., Леонтьева Г. Ф., Мерингова Л. Ф. и др. Протективные свойства некоторых поверхностных белков стрептококков группы В. Журн. микробиол., 2007;5:44 –50. /Grabovskaya K., Leontieva G., Meringova L., et al. Protective properties of some surface proteins of the streptococcus group B. Journal of microbiology. 2007;5:44–50 ( in Russ.).
6. Suvorov A., Dukhovlinov I., Leontieva G., et al. Chimeric protein PSPF, a potential vaccine for prevention Streptococcus pneumonia infection. Journal of Vaccines and Vaccination. 2015;6:6. doi 2157-7560/1000304
7. Mojgani N., Shahali Y., Dadar M. Immune modulatory capacity of probiotic lactic acid bacteria and applications in vaccine development. Benef Microbes. 2020;11(3):213– 226. doi: 10.3920/BM2019.0121.
8. Tarasova E., Yermolenko E., Donets V, et al. The influence of probiotic Enterococcus faecium strain L5 on the microbiota and cytokines expression in rats with. dysbiosis induced by antibiotics. Beneficial Microbs.2010; 1: 265–270.doi:3920|BM2010.0008
9. Karaseva A, Tsapieva A, Pachebat J, Suvorov A. Draft Genome Sequence of Probiotic Enterococcus faecium Strain L-3. Genome Announc. 2016; 28;4(1):e01622–15. doi: 10.1128/genomeA.01622-15. PMID: 26823581; PMCID: PMC4732334
10. Davies JR, Svensäter G, Herzberg MC. Identification of novel LPXTG-linked surface proteins from Streptococcus gordonii. Microbiology (Reading). 2009; 155(6):1977–1988. doi:10.1099/mic.0.027854-0
11. Pinkston K.L., Singh K.V., Gao P., et al. Targeting pili in enterococcal pathogenesis. Infect.Immun.2014;82(4):1540–1547. doi:10.1128/IAI.01403-13
12. Gupalova T., Leontieva G., Kramskaya T., et al. Development of experimental GBS vaccine for mucosal immunization. PLoS One. 2018;13(5):e0196564. doi: 10.1371/journal.pone.0196564
13. Gupalova T., Leontieva G., Kramskaya T., et al. Development of experimental pneumococcal vaccine for mucosal immunization. PLoS One. 2019;28;14(6):e0218679. doi: 10.1371/journal.pone.0218679. PMID: 31251760; PMCID: PMC6599147.
14. Desheva Y., Leontieva G., Kramskaya T., et al. Developing a Live Probiotic Vaccine Based on the Enterococcus faecium L3 Strain Expressing Influenza Neuraminidase. Microorganisms. 2021; 27;9(12):2446. doi:10.3390/microorganisms9122446
15. Desheva Y., Leontieva G., Kramskaya T., et al. Associated virus-bacterial vaccine based on seasonal LAIV and S. pneumoniae chimeric peptide provide protection against post-influenza pneumococcal infection in mouse model. Virulence. 2022;13(1):558–568. doi:10.1080/21505594.2022.2049496
16. Mezhenskaya D, Isakova-Sivak I, Gupalova T, et al. A Live Probiotic Vaccine Prototype Based on Conserved Influenza a Virus Antigens Protect Mice against Lethal Influenza Virus Infection. Biomedicines. 2021;21;9(11):1515. doi: 10.3390/biomedicines9111515
17. Suvorov A, Gupalova T, Desheva Y, et al. Construction of the Enterococcal Strain Expressing Immunogenic Fragment of SARS-Cov-2 Virus. Front Pharmacol. 2022;5(12):807256. doi: 10.3389/fphar.2021.807256.
Review
For citations:
Suvorov A.N., Kramskaya Т.A., Gupalova T.V., Desheva Yu.A., Leontieva G.F. Mucosal Vaccines against Bacterial and Viral Pathogens. Epidemiology and Vaccinal Prevention. 2023;22(4):4-11. (In Russ.) https://doi.org/10.31631/2073-3046-2023-22-4-4-11