Preview

Epidemiology and Vaccinal Prevention

Advanced search

Molecular Surveillance of Natural Focal Diseases Causative Agents in the Stavropol Territory in 2016–2021

https://doi.org/10.31631/2073-3046-2023-22-4-24-34

Abstract

Relevance. Molecular surveillance, aimed at obtaining up-to-date information on the genetic variants of pathogens circulating in the studied region, is an important element of the surveillance of natural focal infections (NFIs). The Stavropol Territory is one of the main recreational regions in the Russian Federation; it is endemic for a number of NFIs, including: Crimean-Congo hemorrhagic fever (CCHF), Q fever, tularemia, Lime disease, etc.

The aim of the work is is genomic profiling of NFIs causative agents circulating in the Stavropol Territory in 2016-2021.

Materials and methods. Microbial strains and samples of field and clinical material containing genomic DNA/RNA of pathogens were used as material for the study. Genetic typing of strains and isolates of DNA/RNA NFIs causative agents was performed by MLVA (Francisella tularensis and Coxiella burnetii) and genome fragment sequencing (Crimean-Congo hemorrhagic fever virus, West Nile virus, orthohantaviruses, Borrelia burgdorferii s.l., Ricckettsia sp.).

Results. As a result of molecular genetic typing in the ST in 2016-2021 confirmed circulation of strains of F. tularensis of genetic subgroups B.I, B.III, B.VI, genetically identical strains of C. burnetii (VNTR-профиль 4-6-6-4-7-6-3-12-3-11), rickettsia belonging to 5 species: R. raoultii, R. aeschlimannii, R. slovaca, R. massiliae, R. helvetica , Borrelia belonging to the species: B. afzelii, B. garinii, B. miyamotoi, B. bavariensis, B. lusitaniae, B. valaisiana, RNA isolates of the CCHF virus of the Europe-1 and Europe-3 genetic lines, Tula orthohantaviruses, West Nile virus genotype 2. For the first time on the territory of the CT, in insectivore lung samples, RNA isolates of orthohantavirus genetically close to Camp Ripley virus (RLPV) were detected.

Conclusions. New data have been obtained on the distribution of genetic variants of NFIs causative agents in the S, also in the recreation areas. Genetic structure of the population of NFIs causative agents in the ST in 2016-2021 did not change significantly, which indicates the relative stability of the natural foci of NFIs in the region.

About the Authors

E. V. Chekrygina
Stavropol State Medical University
Russian Federation

Elena V. Chekrygina – assistant of the Department of Microbiology

Stavropol



A. S. Volynkina
Stavropol Research Anti-Plague Institute
Russian Federation

Anna S. Volynkina – Head of the Viral Infections Diagnostic Laboratory

13-15 Sovjetskaya str., Stavropol, 355000



O. A. Zaitseva
Stavropol Research Anti-Plague Institute
Russian Federation

Olga A. Zaitseva – junior researcher, Bacterial Infections Diagnostic Laboratory

Stavropol



Ya. V. Lisitskaya
Stavropol Research Anti-Plague Institute
Russian Federation

Yana V. Lisitskaya – senior researcher, Viral Infections Diagnostic Laboratory

Stavropol



I. V. Tishchenko
Stavropol Research Anti-Plague Institute
Russian Federation

Ilya V. Tishchenko – junior researcher, Viral Infections Diagnostic Laboratory

Stavropol



O. A. Gnusareva
Stavropol Research Anti-Plague Institute
Russian Federation

Olga A. Gnusareva – biologist, Bacterial Infections Diagnostic Laboratory

Stavropol



D. V. Rostovtseva
Stavropol Research Anti-Plague Institute
Russian Federation

Daria V. Rostovtseva – biologist, Bacterial Infections Diagnostic Laboratory

Stavropol



E. I. Vasilenko
Stavropol Research Anti-Plague Institute
Russian Federation

Ekaterina I. Vasilenko – junior researcher, Viral Infections Diagnostic Laboratory

Stavropol



N. O. Tkachenko
Stavropol Research Anti-Plague Institute
Russian Federation

Natalya O. Tkachenko – junior researcher, Viral Infections Diagnostic Laboratory

Stavropol



O. V. Vasilyeva
Stavropol Research Anti-Plague Institute
Russian Federation

Oksana V. Vasilyeva – Head of the Bacterial Infections Diagnostic Laboratory

Stavropol



K. A. Purmak
Center for Hygiene and Epidemiology in the Stavropol kray
Russian Federation

Kristina A. Purmak – head of the Department of monitoring of natural focal and especially dangerous infections

Stavropol



N. I. Solomashchenko
Center for Hygiene and Epidemiology in the Stavropol kray
Russian Federation

Natalia I. Solomashchenko – chief medical officer

Stavropol



A. N. Kulichenko
Stavropol Research Anti-Plague Institute
Russian Federation

Alexander N. Kulichenko – Director of the Institute

Stavropol



References

1. Maletskaya OV, Prislegina DA, Taran TV, et al. Natural Focal Viral Fevers in the South of European Part of Russia. West Nile Fever. Problems of Particularly Dangerous Infections. 2020;(1):109–114 (In Russ.). https:.doi.org/10.21055/0370-1069-2020-1-109-114

2. Maletskaya OV, Taran TV, Prislegina DA, et al. Natural-Focal Viral Fevers in the South of the European Part of Russia. Crimean-Congo Hemorrhagic Fever. Problems of Particularly Dangerous Infections. 2020;(4):75–80 (In Russ.). https:.doi.org/10.21055/0370-1069-2020-4-75-80

3. Pley C, Evans M, Lowe R, et al. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planet Heal. 2021;10(5):e739–e745. doi:10.1016/S2542-5196(21)00141-8

4. Vasilenko NF, Prislegina DA, Manin EA, et al. Current Status of the Natural Foci of Tick-Borne Diseases in the Stavropol Region. Public Health and Life Environment – PH&LE. 2021;1(12):72–78 (In Russ.). https:.doi.org/2219-5238/2021-29-12-72-78

5. Gardy JL, Loman NJ. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet. 2018;19(1):9–20. doi:10.1038/nrg.2017.88

6. Braks M, Giglio G, Tomassone L, et al. Making Vector-Borne Disease Surveillance Work: New Opportunities From the SDG Perspectives. Front Vet Sci. 2019;(6):232. doi:10.3389/fvets.2019.00232

7. Ciccozzi M, Lai A, Zehender G, et al. The phylogenetic approach for viral infectious disease evolution and epidemiology: An updating review. J Med Virol. 2019;91(10):1707– 1724. doi:10.1002/jmv.25526

8. Mediannikov O, Diatta G, Fenollar F, et al. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl. Trop. Dis. 2010;(4):e821. doi:10.1371/journal.pntd.0000821

9. Klempa B, Fichet-Calvet E, Lecompte E, et al. Hantavirus in African Wood Mouse, Guinea. Emerging Infectious Diseases. 2006;12(5):838–840. doi:10.3201/eid1205.051487.

10. Johansson A, Farlow J, Larsson P., et al. Worldwide Genetic Relationships among Francisella tularensis Isolates Determined by Multiple-Locus Variable-Number Tandem Repeat Analysis. J. Bacteriol. 2004;186(17):5808–5818

11. MLVAnet support site [Internet]. Coxiella burnetii 2014 cooperative database. Available at: http:.mlva.u-psud.fr/mlvanet/spip.php?rubrique50 Assessed: 24 Aug 2022.

12. Yin X, Guo S, Ding C, et al. Spotted Fever Group Rickettsiae in Inner Mongolia, China, 2015–2016. Emerg Infect Dis. 2018;24(11):2105–2107. doi:10.3201/eid2411.162094

13. Wijnveld M, Shhotta A-M, Pinter A, et al. Novel Rickettsia raoultii strain isolated and propagated from Austrian Dermacentor reticulatus ticks. Parasites & Vectors. 2016;(9):567. doi:10.1186/s13071-016-1858-x

14. Fukunaga M, Hamase A, Okada K, et al. Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Appl. Environ. Microbiol. 1996;62(7);2338–2344. DOI: 10.1128/aem.62.7.2338-2344.1996

15. Kulichenko AN, Volynkina AS, Kotenev ES., et al. Novyy geneticheskiy variant virusa Krymskoy-Kongo gemorragicheskoy likhoradki, vyyavlennyy v Krymu. Molecular Genetics, Microbiology and Virology. 2016;34(2):76–80 (In Russ.).

16. Platonov AE, Karan LS, Shopenskaya TA, и др. Genotipirovaniye shtammov virusa likhoradki Zapadnogo Nila, tsirkuliruyushchikh na yuge Rossii, kak metod epidemiologicheskogo rassledovaniya: printsipy i rezul’taty. Zh. Mikrobiol. (Moscow), 2011;88(2):29–37 (In Russ.).

17. Timofeyev V. S., Kudryavtseva T. Yu., Mokriyevich A. N, et al. Molekulyarnoye tipirovaniye shtammov Francisella tularensis metodom mul’tilokusnogo analiza variabel’nosti chisla tandemnykh povtorov. Molecular Genetics, Microbiology and Virology. 2014;1:8–15.

18. Vlasov VV, Igolkina YAP, Rar VA., et al. Kleshchevyye rikketsiozy v Zapadnoy Sibiri. Pervyt Rossiyskiye sluchai rikketsiozov, vyzvannykh Rickettsia aeshlimannii, Rickettsia raoultii i Rockettsia slovaca. Natsional’nyye prioritety Rossii. 2021; T 42 (3):122–26. (In Russ)

19. Fournier PE, Grunnenberger F, Jaulhac B, et al. Evidence of Rickettsia helvetica infection in humans, eastern France. Emerg Infect Dis. 2000;6:389-92. doi:10.3201/eid0604.000412

20. Vitale G, Mansuelo S, Rolain JM, et al. Rickettsia massiliae Human Isolation. Emerg Infect Dis. 2006;12:174–75. doi:10.3201/eid1201.050850

21. Korenberg EI., Nefedova VV., Fadeyeva IA, et al. Principal results of Borrelia genotyping in Russia. Bulletin of Siberian Medicine. 2006;5:87–92. (In Russ.) https:.doi.org/10.20538/1682-0363-2006--87-92

22. Platonov AE, Karan LS., Kolyasnikova NM, et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg. Infect. Dis. 2011;17:1816-22.

23. Krymskaya gemorragicheskaya likhoradka. Ed: Onishchenko GG, Kulichenko AN.: Voronezh: OOO «Favorit»; 2018:288 (In Russ).

24. Chinikar S, Bouzari S, Shokrgozar MA, et al. Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran. J Arthropod Borne Dis. 2016;10(2):127–40.

25. Plyusnin A, Vapalahti O, Lankinen H, et al. Tula virus: a newly detected hantavirus carried by European common voles . J. Virol. 1994. №.68. p. 7833–9.

26. Yashina LN, Zaykovskaya AV, Protopopova YeV, et al. Khantavirus Tula na territorii Kryma. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2015; 33 (4): 38–40 (In Russ).

27. Yakimenko VV, Garanina SB, Malkova MG. et al. Results of hantavirus studying in Western Siberia. Pacific Medical Journal. 2008. No. 2. S. 20–6.

28. Hofmann J, Kramer S, Herrlinger KR, et al. Tula Virus as Causative Agent of Hantavirus Disease in Immunocompetent Person, Germany. Emerg Infect Dis. 2021;27(4):1234–37. doi:10.3201/eid2704.203996

29. Schmidt-Chanasit J, Essbauer S, Petraityte R, et al. Extensive host sharing of central European Tula virus. J. Virol. 2010; 84: 459–74. doi:10.1128/JVI.01226-09

30. Bennett SN, Gu SH, Kang HJ, et al. Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends Microbiol. 2014;22(8):473–82. doi:10.1016/j.tim.2014.04.008

31. Baturin AA., Tkachenko GA., Ledeneva ML, et al. Molekulyarno-geneticheskiy analiz variantov virusa Zapadnogo Nila, tsirkuliruyushchikh na yevropeyskoy chasti Rossii v 2010 –2019 gg. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2021; 98 (3) С.308–18 (In Russ). https:doi:org/10.36233/0372-9311-85


Review

For citations:


Chekrygina E.V., Volynkina A.S., Zaitseva O.A., Lisitskaya Ya.V., Tishchenko I.V., Gnusareva O.A., Rostovtseva D.V., Vasilenko E.I., Tkachenko N.O., Vasilyeva O.V., Purmak K.A., Solomashchenko N.I., Kulichenko A.N. Molecular Surveillance of Natural Focal Diseases Causative Agents in the Stavropol Territory in 2016–2021. Epidemiology and Vaccinal Prevention. 2023;22(4):24-34. (In Russ.) https://doi.org/10.31631/2073-3046-2023-22-4-24-34

Views: 490


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)