Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Изучение аспектов формирования генетически детерминированной резистентности к возбудителю норовирусной инфекции посредством полиморфизма гена FUT2

https://doi.org/10.31631/2073-3046-2023-22-6-148-154

Аннотация

Актуальность. Норовирусы являются высококонтагиозными возбудителями острой норовирусной инфекции человека. Норовирусная популяция является причиной каждого пятого случая острого небактериального гастроэнтерита, ежегодно поражает около 699 млн человек и вызывает более 200 тыс. случаев смерти по всему миру. Контролируемая экспрессия антигенов HBGA геном FUT2 обуславливает резистентность реактивного организма человека к норовирусу. Полиморфизм генов семейства FUT способствует частичной или полной невосприимчивости к некоторым геногруппам/генотипам норовируса.

Цель. Охарактеризовать влияние полиморфизма гена FUT2 на восприимчивость людей к возбудителю норовирусной инфекции.

Результаты. Нонсенс-мутации G428A в двух гомологичных аллеях способствуют формированию секреторно-отрицательного фенотипа (se), что является фактором, определяющим невосприимчивость к норовирусам. Некоторые миссенсмутации в нуклеотидных позициях se385,571 обеспечивают частичную резистентность к определенным генотипам. Люди с секреторно-отрицательным фенотипом обладают полной невосприимчивостью к генотипу GII.4 и его геновариантам.

Выводы. Экспрессия антигенов HBGA функционально неактивным геном FUT2 играет ключевую роль в резистентности человеческой популяции к возбудителю норовирусного гастроэнтерита. Восприимчивость к норовирусному агенту во многом зависит от распространенности фенотипического разнообразия HBGA среди этнических популяций по всему миру. Целенаправленный скрининг, направленный на идентификацию полиморфизма семейства FUT, позволит определять группы риска по инфицированию норовирусом.

Об авторах

Р. О. Быков
ФБУН «Федеральный научно-исследовательский институт вирусных инфекций «Виром» Роспотребнадзора
Россия

Роман Олегович Быков – аспирант, младший научный сотрудник лаборатории энтеральных вирусных инфекций

г. Екатеринбург



А. В. Семенов
ФБУН «Федеральный научно-исследовательский институт вирусных инфекций «Виром» Роспотребнадзора
Россия

Александр Владимирович Семенов – д. б. н., директор

г. Екатеринбург



П. К. Старикова
ФБУН «Федеральный научно-исследовательский институт вирусных инфекций «Виром» Роспотребнадзора
Россия

Полина Константиновна Старикова – врач-эпидемиолог лаборатории энтеральных вирусных инфекций

г. Екатеринбург



Т. М. Итани
ФБУН «Федеральный научно-исследовательский институт вирусных инфекций «Виром» Роспотребнадзора
Россия

Тарек Мохамедович Итани – к. б. н., зав. лаборатории энтеральных вирусных инфекций

г. Екатеринбург



Список литературы

1. Patel MM, Widdowson MA, Glass RI, et al. Systematic Literature Review of Role of Noroviruses in Sporadic Gastroenteritis. Emerging Infectious Diseases. 2008;14(8):1224–1231. doi:https://doi.org/10.3201/eid1408.071114

2. Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses. 2019;11(6):495. doi:https://doi.org/10.3390/v11060495

3. Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nature Medicine. 2003;9(5):548–553. doi:https://doi.org/10.1038/nm860

4. Bartsch SM, Lopman BA, Ozawa S, et al. Global Economic Burden of Norovirus Gastroenteritis. Olson DR, ed. PLOS ONE. 2016;11(4):e0151219. doi:https://doi.org/10.1371/journal.pone.0151219

5. Lopman BA, Steele D, Kirkwood CD, et al. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control. PLOS Medicine. 2016;13(4):e1001999. doi:https://doi.org/10.1371/journal.pmed.1001999

6. Chen SY, Chiu CH. Worldwide molecular epidemiology of norovirus infection. Paediatrics and International Child Health. 2012;32(3):128–131. doi:https://doi.org/10.1179/2046905512Y.0000000031

7. Huhti L, Szakal ED, Puustinen L, et al. Norovirus GII-4 Causes a More Severe Gastroenteritis Than Other Noroviruses in Young Children. Journal of Infectious Diseases. 2011;203(10):1442–1444. doi:https://doi.org/10.1093/infdis/jir039

8. Imbert-Marcille BM, Barbé L, Dupé M, et al. A FUT2 Gene Common Polymorphism Determines Resistance to Rotavirus A of the P[8] Genotype. The Journal of Infectious Diseases.2013;209(8):1227–1230. doi:https://doi.org/10.1093/infdis/jit655

9. Ramani S, Atmar RL, Estes MK. Epidemiology of human noroviruses and updates on vaccine development. Current Opinion in Gastroenterology. 2014;30(1):25–33.doi:https://doi.org/10.1097/mog.0000000000000022

10. Ruvoën-Clouet N, Belliot G, Le Pendu J. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Reviews in Medical Virology. 2013;23(6):355–366. doi:https://doi.org/10.1002/rmv.1757

11. Marionneau S, Ruvoën N, Le Moullac-Vaidye B, et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology. 2002;122(7):1967–1977. doi:https://doi.org/10.1053/gast.2002.33661

12. Hutson AM, Atmar RL, Estes MK. Norovirus disease: changing epidemiology and host susceptibility factors. Trends in Microbiology. 2004;12(6):279–287. doi:https://doi.org/10.1016/j.tim.2004.04.005

13. Tan M, Jiang X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends in Microbiology. 2005;13(6):285–293. doi:https://doi.org/10.1016/j.tim.2005.04.004

14. Campi C, Escovich L, Moreno A, et al. Expression of the gene encoding secretor type galactoside 2 α fucosyltransferase (FUT2) and ABH antigens in patients with oral lesions. Medicina Oral Patología Oral y Cirugia Bucal. 2012;17(1):e63–e68. doi:https://doi.org/10.4317/medoral.17239

15. Thorven M, Grahn A, Hedlund KO, et al. A Homozygous Nonsense Mutation (428G–A) in the Human Secretor (FUT2) Gene Provides Resistance to Symptomatic Norovirus (GGII) Infections. Journal of Virology. 2005;79(24):15351–15355. doi:https://doi.org/10.1128/jvi.79.24.15351-15355.2005

16. Ferrer-Admetlla A, Sikora M, Laayouni H, et al. A Natural History of FUT2 Polymorphism in Humans. Molecular Biology and Evolution. 2009;26(9):1993–2003. doi:https://doi.org/10.1093/molbev/msp108

17. Wacklin P, Mäkivuokko H, Alakulppi N, et al. Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine. PLoS ONE. 2011;6(5). doi:https://doi.org/10.1371/journal.pone.0020113

18. Marionneau S, Airaud F, Bovin Nicolai V, et al. Influence of the CombinedABO, FUT2, and FUT3 Polymorphism on Susceptibility to Norwalk Virus Attachment. The Journal of Infectious Diseases. 2005;192(6):1071–1077. doi:https://doi.org/10.1086/432546

19. Yang TA, Hou JY, Huang YC, Chen CJ. Genetic Susceptibility to Rotavirus Gastroenteritis and Vaccine Effectiveness in Taiwanese Children. Scientific Reports. 2017;7(1). doi:https://doi.org/10.1038/s41598-017-06686-y

20. Nordgren J, Sharma S, Bucardo F, et al. Both Lewis and Secretor Status Mediate Susceptibility to Rotavirus Infections in a Rotavirus Genotype–Dependent Manner. Clinical Infectious Diseases. 2014;59(11):1567–1573. doi:https://doi.org/10.1093/cid/ciu633

21. Nordgren J, Nitiema LW, Ouermi D, et al. Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso. Kapoor A, ed. PLoS ONE. 2013;8(7):e69557. doi:https://doi.org/10.1371/journal.pone.0069557

22. Soejima M, Nakajima T, Fujihara J, et al. Genetic variation ofFUT2in Ovambos, Turks, and Mongolians. Transfusion. 2008;48(7):1423–1431. doi:https://doi.org/10.1111/j.1537-2995.2008.01710.x

23. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi:https://doi.org/10.1038/nature05874

24. Silva LM, Ana Sofia Carvalho, Guillon P, et al. Infection-associated FUT2 (Fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconjugate Journal. 2009;27(1):61–68. doi:https://doi.org/10.1007/s10719-009-9255-8

25. Kaur P, Gupta M, Sagar V. FUT2 gene as a genetic susceptible marker of infectious diseases: A Review. International Journal of Molecular Epidemiology and Genetics. 2022;13(1):1-14. Accessed September 18, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301175/

26. Harrington PR, Vinje J, Moe CL, Baric RS. Norovirus Capture with Histo-Blood Group Antigens Reveals Novel Virus-Ligand Interactions. Journal of Virology. 2004;78(6):3035–3045. doi:https://doi.org/10.1128/jvi.78.6.3035-3045.2004

27. Huang P, Farkas T, Marionneau S, et al. Noroviruses Bind to Human ABO, Lewis, and Secretor Histo–Blood Group Antigens: Identification of 4 Distinct Strain‐Specific Patterns. The Journal of Infectious Diseases. 2003;188(1):19–31. doi:https://doi.org/10.1086/375742

28. Hutson AM, Atmar RL, Marcus DM, Estes MK. Norwalk Virus-Like Particle Hemagglutination by Binding to H Histo-Blood Group Antigens. Journal of Virology. 2003;77(1):405–415. doi:https://doi.org/10.1128/jvi.77.1.405-415.2003

29. Tan M, Jiang X. Norovirus Gastroenteritis, Carbohydrate Receptors, and Animal Models. Madhani HD, ed. PLoS Pathogens. 2010;6(8):e1000983. doi:https://doi.org/10.1371/journal.ppat.1000983

30. Ali ES, Rajapaksha H, Carr JM, Petrovsky N. Norovirus drug candidates that inhibit viral capsid attachment to human histo-blood group antigens. Antiviral Research. 2016;133(1):14–22. doi:https://doi.org/10.1016/j.antiviral.2016.07.006

31. Nordgren J, Sharma S, Kambhampati A, et al. Innate Resistance and Susceptibility to Norovirus Infection. Dutch RE, ed. PLOS Pathogens. 2016;12(4):e1005385. doi:https://doi.org/10.1371/journal.ppat.1005385

32. Miura T, Sano D, Suenaga A, et al. Histo-Blood Group Antigen-Like Substances of Human Enteric Bacteria as Specific Adsorbents for Human Noroviruses. Journal of Virology. 2013;87(17):9441–9451. doi:https://doi.org/10.1128/JVI.01060-13

33. Wacklin P, Tuimala J, Nikkilä J, et al. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status. Quince C, ed. PLoS ONE. 2014;9(4):e94863. doi:https://doi.org/10.1371/journal.pone.0094863

34. Lindesmith LC, Moe CL, LePendu J, et al. Cellular and Humoral Immunity following Snow Mountain Virus Challenge. Journal of Virology. 2005;79(5):2900–2909. doi:https://doi.org/10.1128/jvi.79.5.2900-2909.2005

35. Hutson Anne M, Atmar Robert L, Graham David Y, Estes Mary K. Norwalk Virus Infection and Disease Is Associated with ABO Histo–Blood Group Type. The Journal of Infectious Diseases. 2002;185(9):1335–1337. doi:https://doi.org/10.1086/339883

36. Graham DY, Jiang X, Tanaka T, et al. Norwalk Virus Infection of Volunteers: New Insights Based on Improved Assays. The Journal of Infectious Diseases. 1994;170(1):34–43. doi:https://doi.org/10.1093/infdis/170.1.34

37. Frenck R, Bernstein DI, Xia M, et al. Predicting Susceptibility to Norovirus GII.4 by Use of a Challenge Model Involving Humans. Journal of Infectious Diseases. 2012;206(9):1386–1393. doi:https://doi.org/10.1093/infdis/jis514

38. Hutson AM, Airaud F, LePendu J, et al. Norwalk virus infection associates with secretor status genotyped from sera. Journal of Medical Virology. 2005;77(1):116–120. doi:https://doi.org/10.1002/jmv.20423

39. Huang P, Farkas T, Zhong W, et al. Norovirus and Histo-Blood Group Antigens: Demonstration of a Wide Spectrum of Strain Specificities and Classification of Two Major Binding Groups among Multiple Binding Patterns. Journal of Virology. 2005;79(11):6714–6722. doi:https://doi.org/10.1128/jvi.79.11.6714-6722.2005

40. de Graaf M, van Beek J, Koopmans MPG. Human norovirus transmission and evolution in a changing world. Nature Reviews Microbiology. 2016;14(7):421–433. doi:https://doi.org/10.1038/nrmicro.2016.48

41. Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology. 2008;80(7):1296–1301. doi:https://doi.org/10.1002/jmv.21200

42. Trang NV, Vu HT, Le NT, et al. Association between Norovirus and Rotavirus Infection and Histo-Blood Group Antigen Types in Vietnamese Children. Journal of Clinical Microbiology. 2014;52(5):1366–1374. doi:https://doi.org/10.1128/jcm.02927-13

43. Jin M, He Y, Li H, et al. Two Gastroenteritis Outbreaks Caused by GII Noroviruses: Host Susceptibility and HBGA Phenotypes. Kirk M, ed. PLoS ONE. 2013;8(3):e58605. doi:https://doi.org/10.1371/journal.pone.0058605

44. Rockx Barry HG, Vennema H, Hoebe Christian JPA, et al. Association of Histo–Blood Group Antigens and Susceptibility to Norovirus Infections. The Journal of Infectious Diseases. 2005;191(5):749–754. doi:https://doi.org/10.1086/427779

45. Nordgren J, Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses. 2019;11(3):226. doi:https://doi.org/10.3390/v11030226

46. Currier RL, Payne DC, Staat MA, et al. Innate Susceptibility to Norovirus Infections Influenced by FUT2 Genotype in a United States Pediatric Population. Clinical Infectious Diseases. 2015;60(11):1631–1638. doi:https://doi.org/10.1093/cid/civ165

47. Lopman BA, Trivedi T, Vicuña Y, et al. Norovirus Infection and Disease in an Ecuadorian Birth Cohort: Association of Certain Norovirus Genotypes With Host FUT2 Secretor Status. The Journal of Infectious Diseases. 2015;211(11):1813–1821. doi:https://doi.org/10.1093/infdis/jiu672

48. Bucardo F, Kindberg E, Paniagua M, et al. Genetic susceptibility to symptomatic norovirus infection in Nicaragua. Journal of Medical Virology. 2009;81(4):728–735. doi:https://doi.org/10.1002/jmv.21426

49. Prystajecky N, Fiona, Auk B, et al. Personalized Genetic Testing and Norovirus Susceptibility. Canadian Journal of Infectious Diseases & Medical Microbiology. 2014;25(4):222–224. doi:https://doi.org/10.1155/2014/708579

50. Kindberg E, Akerlind B, Johnsen C, et al. Host Genetic Resistance to Symptomatic Norovirus (GGII.4) Infections in Denmark. Journal of Clinical Microbiology. 2007;45(8):2720–2722. doi:https://doi.org/10.1128/jcm.00162-07

51. King J, Jezabel V, Lennart H. Fucosyltransferase Gene Polymorphisms and Lewisb-Negative Status Are Frequent in Swedish Newborns, With Implications for Infectious Disease Susceptibility and Personalized Medicine. Journal of the Pediatric Infectious Diseases Society. 2018;8(6):507–518. doi:https://doi.org/10.1093/jpids/piy085

52. Bucardo F, Reyes Y, Becker-Dreps S, et al. Pediatric norovirus GII.4 infections in Nicaragua, 1999–2015. Infection, Genetics and Evolution. 2017;55(1):305–312. doi:https://doi.org/10.1016/j.meegid.2017.10.001

53. Monedero V, Buesa J, Rodríguez-Díaz J. The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut. Viruses. 2018;10(2):96. doi:https://doi.org/10.3390/v10020096

54. Chang JG, Yang TY, Liu TC, et al. Molecular analysis of secretor type alpha (1,2)-fucosyltransferase gene mutations in the Chinese and Thai populations. Transfusion. 1999;39(9):1013–1017. doi:https://doi.org/10.1046/j.1537-2995.1999.39091013.x


Рецензия

Для цитирования:


Быков Р.О., Семенов А.В., Старикова П.К., Итани Т.М. Изучение аспектов формирования генетически детерминированной резистентности к возбудителю норовирусной инфекции посредством полиморфизма гена FUT2. Эпидемиология и Вакцинопрофилактика. 2023;22(6):148-154. https://doi.org/10.31631/2073-3046-2023-22-6-148-154

For citation:


Bykov R.O., Semenov A.V., Starikova P.K., Itani T.M. Formation of Genetically Determined Resistance against Human Norovirus Infection through Polymorphism of the FUT2 gene: a Review of the Literature. Epidemiology and Vaccinal Prevention. 2023;22(6):148-154. (In Russ.) https://doi.org/10.31631/2073-3046-2023-22-6-148-154

Просмотров: 308


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)