Preview

Epidemiology and Vaccinal Prevention

Advanced search

Formation of Genetically Determined Resistance against Human Norovirus Infection through Polymorphism of the FUT2 gene: a Review of the Literature

https://doi.org/10.31631/2073-3046-2023-22-6-148-154

Abstract

Relevance. Human Noroviruses (HuNoV) are highly contagious pathogens responsible of acute human norovirus infection. HuNoV is the cause of every fifth case of acute non-bacterial gastroenteritis, annually causing about 699 million cases of the disease and more than 200 thousand deaths worldwide. Controlled expression of the HBGA antigens by the FUT2 gene causes resistance to human norovirus. Polymorphisms of the FUT family genes contribute to partial or complete immunity to certain genogroups/ genotypes of norovirus.

Aims. To characterize the effect of FUT2 gene polymorphisms on susceptibility to HuNoV.

Results. Nonsensemutations of G428A in two homologous alleles contribute to the formation of a secretory-negative phenotype (se), which is a factor determining immunity to noroviruses. Some missense-mutations in the nucleotide positions se385,571 form partial resistance against certain genotypes. People with a secretory-negative phenotype are immune to infection by the GII.4 genotype and its genovariants.

Conclusions. The expression of HLA antigens by the functionally inactive FUT2 gene plays a key role in the resistance of the human population to HuNoV. Susceptibility to HuNoV largely depends on the prevalence of HBGA phenotypic diversity among ethnic populations around the world. Targeted screening aimed at identifying polymorphisms of the FUT family will allow identifying risk groups more susceptible to HuNoV.

About the Authors

R. O. Bykov
Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Russian Federation

Roman O. Bykov – Postgraduate student, intern researcher at the Laboratory of Enteral Viral Infections

Ekaterinburg



A. V. Semenov
Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Russian Federation

Alexander V. Semenov – Dr. Sci. (Biol.), Director

Ekaterinburg



P. K. Starikova
Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Russian Federation

Polina K. Starikova – Epidemiologist of the Laboratory of Enteral Viral Infections

Ekaterinburg



T. M. Itani
Federal Budgetary Institution of Science «Federal Scientific Research Institute of Viral Infections «Virome» Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
Russian Federation

Tarek M. Itani – Cand. Sci. (Biol.), Head. Laboratories of Enteral Viral Infections

Ekaterinburg



References

1. Patel MM, Widdowson MA, Glass RI, et al. Systematic Literature Review of Role of Noroviruses in Sporadic Gastroenteritis. Emerging Infectious Diseases. 2008;14(8):1224–1231. doi:https://doi.org/10.3201/eid1408.071114

2. Graziano VR, Wei J, Wilen CB. Norovirus Attachment and Entry. Viruses. 2019;11(6):495. doi:https://doi.org/10.3390/v11060495

3. Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nature Medicine. 2003;9(5):548–553. doi:https://doi.org/10.1038/nm860

4. Bartsch SM, Lopman BA, Ozawa S, et al. Global Economic Burden of Norovirus Gastroenteritis. Olson DR, ed. PLOS ONE. 2016;11(4):e0151219. doi:https://doi.org/10.1371/journal.pone.0151219

5. Lopman BA, Steele D, Kirkwood CD, et al. The Vast and Varied Global Burden of Norovirus: Prospects for Prevention and Control. PLOS Medicine. 2016;13(4):e1001999. doi:https://doi.org/10.1371/journal.pmed.1001999

6. Chen SY, Chiu CH. Worldwide molecular epidemiology of norovirus infection. Paediatrics and International Child Health. 2012;32(3):128–131. doi:https://doi.org/10.1179/2046905512Y.0000000031

7. Huhti L, Szakal ED, Puustinen L, et al. Norovirus GII-4 Causes a More Severe Gastroenteritis Than Other Noroviruses in Young Children. Journal of Infectious Diseases. 2011;203(10):1442–1444. doi:https://doi.org/10.1093/infdis/jir039

8. Imbert-Marcille BM, Barbé L, Dupé M, et al. A FUT2 Gene Common Polymorphism Determines Resistance to Rotavirus A of the P[8] Genotype. The Journal of Infectious Diseases.2013;209(8):1227–1230. doi:https://doi.org/10.1093/infdis/jit655

9. Ramani S, Atmar RL, Estes MK. Epidemiology of human noroviruses and updates on vaccine development. Current Opinion in Gastroenterology. 2014;30(1):25–33.doi:https://doi.org/10.1097/mog.0000000000000022

10. Ruvoën-Clouet N, Belliot G, Le Pendu J. Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution. Reviews in Medical Virology. 2013;23(6):355–366. doi:https://doi.org/10.1002/rmv.1757

11. Marionneau S, Ruvoën N, Le Moullac-Vaidye B, et al. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. Gastroenterology. 2002;122(7):1967–1977. doi:https://doi.org/10.1053/gast.2002.33661

12. Hutson AM, Atmar RL, Estes MK. Norovirus disease: changing epidemiology and host susceptibility factors. Trends in Microbiology. 2004;12(6):279–287. doi:https://doi.org/10.1016/j.tim.2004.04.005

13. Tan M, Jiang X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. Trends in Microbiology. 2005;13(6):285–293. doi:https://doi.org/10.1016/j.tim.2005.04.004

14. Campi C, Escovich L, Moreno A, et al. Expression of the gene encoding secretor type galactoside 2 α fucosyltransferase (FUT2) and ABH antigens in patients with oral lesions. Medicina Oral Patología Oral y Cirugia Bucal. 2012;17(1):e63–e68. doi:https://doi.org/10.4317/medoral.17239

15. Thorven M, Grahn A, Hedlund KO, et al. A Homozygous Nonsense Mutation (428G–A) in the Human Secretor (FUT2) Gene Provides Resistance to Symptomatic Norovirus (GGII) Infections. Journal of Virology. 2005;79(24):15351–15355. doi:https://doi.org/10.1128/jvi.79.24.15351-15355.2005

16. Ferrer-Admetlla A, Sikora M, Laayouni H, et al. A Natural History of FUT2 Polymorphism in Humans. Molecular Biology and Evolution. 2009;26(9):1993–2003. doi:https://doi.org/10.1093/molbev/msp108

17. Wacklin P, Mäkivuokko H, Alakulppi N, et al. Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine. PLoS ONE. 2011;6(5). doi:https://doi.org/10.1371/journal.pone.0020113

18. Marionneau S, Airaud F, Bovin Nicolai V, et al. Influence of the CombinedABO, FUT2, and FUT3 Polymorphism on Susceptibility to Norwalk Virus Attachment. The Journal of Infectious Diseases. 2005;192(6):1071–1077. doi:https://doi.org/10.1086/432546

19. Yang TA, Hou JY, Huang YC, Chen CJ. Genetic Susceptibility to Rotavirus Gastroenteritis and Vaccine Effectiveness in Taiwanese Children. Scientific Reports. 2017;7(1). doi:https://doi.org/10.1038/s41598-017-06686-y

20. Nordgren J, Sharma S, Bucardo F, et al. Both Lewis and Secretor Status Mediate Susceptibility to Rotavirus Infections in a Rotavirus Genotype–Dependent Manner. Clinical Infectious Diseases. 2014;59(11):1567–1573. doi:https://doi.org/10.1093/cid/ciu633

21. Nordgren J, Nitiema LW, Ouermi D, et al. Host Genetic Factors Affect Susceptibility to Norovirus Infections in Burkina Faso. Kapoor A, ed. PLoS ONE. 2013;8(7):e69557. doi:https://doi.org/10.1371/journal.pone.0069557

22. Soejima M, Nakajima T, Fujihara J, et al. Genetic variation ofFUT2in Ovambos, Turks, and Mongolians. Transfusion. 2008;48(7):1423–1431. doi:https://doi.org/10.1111/j.1537-2995.2008.01710.x

23. Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi:https://doi.org/10.1038/nature05874

24. Silva LM, Ana Sofia Carvalho, Guillon P, et al. Infection-associated FUT2 (Fucosyltransferase 2) genetic variation and impact on functionality assessed by in vivo studies. Glycoconjugate Journal. 2009;27(1):61–68. doi:https://doi.org/10.1007/s10719-009-9255-8

25. Kaur P, Gupta M, Sagar V. FUT2 gene as a genetic susceptible marker of infectious diseases: A Review. International Journal of Molecular Epidemiology and Genetics. 2022;13(1):1-14. Accessed September 18, 2023. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301175/

26. Harrington PR, Vinje J, Moe CL, Baric RS. Norovirus Capture with Histo-Blood Group Antigens Reveals Novel Virus-Ligand Interactions. Journal of Virology. 2004;78(6):3035–3045. doi:https://doi.org/10.1128/jvi.78.6.3035-3045.2004

27. Huang P, Farkas T, Marionneau S, et al. Noroviruses Bind to Human ABO, Lewis, and Secretor Histo–Blood Group Antigens: Identification of 4 Distinct Strain‐Specific Patterns. The Journal of Infectious Diseases. 2003;188(1):19–31. doi:https://doi.org/10.1086/375742

28. Hutson AM, Atmar RL, Marcus DM, Estes MK. Norwalk Virus-Like Particle Hemagglutination by Binding to H Histo-Blood Group Antigens. Journal of Virology. 2003;77(1):405–415. doi:https://doi.org/10.1128/jvi.77.1.405-415.2003

29. Tan M, Jiang X. Norovirus Gastroenteritis, Carbohydrate Receptors, and Animal Models. Madhani HD, ed. PLoS Pathogens. 2010;6(8):e1000983. doi:https://doi.org/10.1371/journal.ppat.1000983

30. Ali ES, Rajapaksha H, Carr JM, Petrovsky N. Norovirus drug candidates that inhibit viral capsid attachment to human histo-blood group antigens. Antiviral Research. 2016;133(1):14–22. doi:https://doi.org/10.1016/j.antiviral.2016.07.006

31. Nordgren J, Sharma S, Kambhampati A, et al. Innate Resistance and Susceptibility to Norovirus Infection. Dutch RE, ed. PLOS Pathogens. 2016;12(4):e1005385. doi:https://doi.org/10.1371/journal.ppat.1005385

32. Miura T, Sano D, Suenaga A, et al. Histo-Blood Group Antigen-Like Substances of Human Enteric Bacteria as Specific Adsorbents for Human Noroviruses. Journal of Virology. 2013;87(17):9441–9451. doi:https://doi.org/10.1128/JVI.01060-13

33. Wacklin P, Tuimala J, Nikkilä J, et al. Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status. Quince C, ed. PLoS ONE. 2014;9(4):e94863. doi:https://doi.org/10.1371/journal.pone.0094863

34. Lindesmith LC, Moe CL, LePendu J, et al. Cellular and Humoral Immunity following Snow Mountain Virus Challenge. Journal of Virology. 2005;79(5):2900–2909. doi:https://doi.org/10.1128/jvi.79.5.2900-2909.2005

35. Hutson Anne M, Atmar Robert L, Graham David Y, Estes Mary K. Norwalk Virus Infection and Disease Is Associated with ABO Histo–Blood Group Type. The Journal of Infectious Diseases. 2002;185(9):1335–1337. doi:https://doi.org/10.1086/339883

36. Graham DY, Jiang X, Tanaka T, et al. Norwalk Virus Infection of Volunteers: New Insights Based on Improved Assays. The Journal of Infectious Diseases. 1994;170(1):34–43. doi:https://doi.org/10.1093/infdis/170.1.34

37. Frenck R, Bernstein DI, Xia M, et al. Predicting Susceptibility to Norovirus GII.4 by Use of a Challenge Model Involving Humans. Journal of Infectious Diseases. 2012;206(9):1386–1393. doi:https://doi.org/10.1093/infdis/jis514

38. Hutson AM, Airaud F, LePendu J, et al. Norwalk virus infection associates with secretor status genotyped from sera. Journal of Medical Virology. 2005;77(1):116–120. doi:https://doi.org/10.1002/jmv.20423

39. Huang P, Farkas T, Zhong W, et al. Norovirus and Histo-Blood Group Antigens: Demonstration of a Wide Spectrum of Strain Specificities and Classification of Two Major Binding Groups among Multiple Binding Patterns. Journal of Virology. 2005;79(11):6714–6722. doi:https://doi.org/10.1128/jvi.79.11.6714-6722.2005

40. de Graaf M, van Beek J, Koopmans MPG. Human norovirus transmission and evolution in a changing world. Nature Reviews Microbiology. 2016;14(7):421–433. doi:https://doi.org/10.1038/nrmicro.2016.48

41. Tan M, Jin M, Xie H, et al. Outbreak studies of a GII-3 and a GII-4 norovirus revealed an association between HBGA phenotypes and viral infection. Journal of Medical Virology. 2008;80(7):1296–1301. doi:https://doi.org/10.1002/jmv.21200

42. Trang NV, Vu HT, Le NT, et al. Association between Norovirus and Rotavirus Infection and Histo-Blood Group Antigen Types in Vietnamese Children. Journal of Clinical Microbiology. 2014;52(5):1366–1374. doi:https://doi.org/10.1128/jcm.02927-13

43. Jin M, He Y, Li H, et al. Two Gastroenteritis Outbreaks Caused by GII Noroviruses: Host Susceptibility and HBGA Phenotypes. Kirk M, ed. PLoS ONE. 2013;8(3):e58605. doi:https://doi.org/10.1371/journal.pone.0058605

44. Rockx Barry HG, Vennema H, Hoebe Christian JPA, et al. Association of Histo–Blood Group Antigens and Susceptibility to Norovirus Infections. The Journal of Infectious Diseases. 2005;191(5):749–754. doi:https://doi.org/10.1086/427779

45. Nordgren J, Svensson L. Genetic Susceptibility to Human Norovirus Infection: An Update. Viruses. 2019;11(3):226. doi:https://doi.org/10.3390/v11030226

46. Currier RL, Payne DC, Staat MA, et al. Innate Susceptibility to Norovirus Infections Influenced by FUT2 Genotype in a United States Pediatric Population. Clinical Infectious Diseases. 2015;60(11):1631–1638. doi:https://doi.org/10.1093/cid/civ165

47. Lopman BA, Trivedi T, Vicuña Y, et al. Norovirus Infection and Disease in an Ecuadorian Birth Cohort: Association of Certain Norovirus Genotypes With Host FUT2 Secretor Status. The Journal of Infectious Diseases. 2015;211(11):1813–1821. doi:https://doi.org/10.1093/infdis/jiu672

48. Bucardo F, Kindberg E, Paniagua M, et al. Genetic susceptibility to symptomatic norovirus infection in Nicaragua. Journal of Medical Virology. 2009;81(4):728–735. doi:https://doi.org/10.1002/jmv.21426

49. Prystajecky N, Fiona, Auk B, et al. Personalized Genetic Testing and Norovirus Susceptibility. Canadian Journal of Infectious Diseases & Medical Microbiology. 2014;25(4):222–224. doi:https://doi.org/10.1155/2014/708579

50. Kindberg E, Akerlind B, Johnsen C, et al. Host Genetic Resistance to Symptomatic Norovirus (GGII.4) Infections in Denmark. Journal of Clinical Microbiology. 2007;45(8):2720–2722. doi:https://doi.org/10.1128/jcm.00162-07

51. King J, Jezabel V, Lennart H. Fucosyltransferase Gene Polymorphisms and Lewisb-Negative Status Are Frequent in Swedish Newborns, With Implications for Infectious Disease Susceptibility and Personalized Medicine. Journal of the Pediatric Infectious Diseases Society. 2018;8(6):507–518. doi:https://doi.org/10.1093/jpids/piy085

52. Bucardo F, Reyes Y, Becker-Dreps S, et al. Pediatric norovirus GII.4 infections in Nicaragua, 1999–2015. Infection, Genetics and Evolution. 2017;55(1):305–312. doi:https://doi.org/10.1016/j.meegid.2017.10.001

53. Monedero V, Buesa J, Rodríguez-Díaz J. The Interactions between Host Glycobiology, Bacterial Microbiota, and Viruses in the Gut. Viruses. 2018;10(2):96. doi:https://doi.org/10.3390/v10020096

54. Chang JG, Yang TY, Liu TC, et al. Molecular analysis of secretor type alpha (1,2)-fucosyltransferase gene mutations in the Chinese and Thai populations. Transfusion. 1999;39(9):1013–1017. doi:https://doi.org/10.1046/j.1537-2995.1999.39091013.x


Review

For citations:


Bykov R.O., Semenov A.V., Starikova P.K., Itani T.M. Formation of Genetically Determined Resistance against Human Norovirus Infection through Polymorphism of the FUT2 gene: a Review of the Literature. Epidemiology and Vaccinal Prevention. 2023;22(6):148-154. (In Russ.) https://doi.org/10.31631/2073-3046-2023-22-6-148-154

Views: 313


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)