Preview

Epidemiology and Vaccinal Prevention

Advanced search

Transmission Electronic Microscopy of Vibrio cholerae Biofilms on Chitin-Containing Substrates

https://doi.org/10.31631/2073-3046-2024-23-1-41-50

Abstract

Introduction. The evolutionary association of Vibrio cholerae with chitin provided resistance to stress and protection from predators. The most important mechanism that provided V. cholerae with the effectiveness of association with chitin is biofilm formation. The ability to form a biofilm in V. cholerae depends on the presence of a factor, toxin-corrected adhesion pili (TCP), which are synthesized by the tcp A-F genes. One of the key methods for studying biofilms is microscopy. It allows one to visualize the structural elements and study various parameters of biofilms and the effects of various factors on them. Aim. To determine the epidemiological significance of the biofilm-forming ability of toxigenic strains by their morphological characteristics on chitin-containing substrates. Study of structural differences in biofilms of Vibrio cholerae tcpA+– and tcpA– strains on chitin-containing substrates. Results. It has been shown that Vibrio cholerae tcpA+– and tcpA– strains are able to form biofilms on the surface of chitin-containing substrates. The intensity of biofilm formation is more pronounced in tcpA+ strains, because V. cholerae ctxA+ tcpA+ cells in the biofilm are predominantly singly located and the surface of the chitinous exoskeleton with which they are in contact is intact, V. cholerae ctxA– tcpA– cells form chains in the biofilm, which indicates division processes, and scattered chitin of the endocuticle indicates activity of metabolic processes. Conclusion. The strains of V. cholerae used in the work, regardless of the presence or absence of the ctx and tcp genes, form bioplecs on a chitin substrate. The indicator of biofilm formation in terms of the thickness of the biofilm matrix is higher in V. cholerae ctxA+ tcpA+ , in terms of the degree of degradation of the chitin substrate it is higher in V. cholerae ctxA– tcpA– .

About the Authors

S. V. Titova
FKUZ Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute of Rospotrebnadzor
Russian Federation

Svetlana V. Titova – Cand. Sci. (Med.), leading researcher, laboratories of natural focal and zoonotic infections,

Rostov-on-Don,

tel. +7 (863) 240-91-08.



I. R. Simonova
FKUZ Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute of Rospotrebnadzor
Russian Federation

Irina R. Simonova – senior Researcher, laboratories of diagnostic preparations,

Rostov-on-Don.



E. A. Menshikova
FKUZ Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute of Rospotrebnadzor
Russian Federation

Elena A. Menshikova  – Cand. Sci. (Biol.), senior researcher Department of  Microbiology of  cholera and other acute intestinal infections,

Rostov-on-Don.



V. S. Osadchaya
FKUZ Rostov-on-Don of the Order of the Red Banner of Labor Research Anti-Plague Institute of Rospotrebnadzor
Russian Federation

Victoria S. Osadchaya – laboratory assistant of the laboratories of natural focal and zoonotic infections, 

Rostov-on-Don.



References

1. Silva AJ, Benitez JA. Vibrio cholerae biofilms and cholera pathogenesis. PLOS Neglected Tropical Diseases. 2016;10(2). DOI: https://doi.org/10.1371/journal.pntd.0004330

2. Rahman H., Mahbub K.R., Vergara G.E., et al. Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. The ISME Journal. 2022;16:1993–2001. DOI: https://doi.org/10.1038/s41396-022-01249-0

3. Pruzzo C., Vezzulli L, Colwell R.R. Global impact Vibrio cholerae interactions with chitin. Environ. Microbiol. 2008;10:1400–1410. DOI: 10.1111/j.1462-2920.2007.01559.x

4. Vezzulli L, Guzman C.A., Colwell R.R., Pruzzo C. Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. Curr. Opin. Biotechnol. 2008;19. DOI: http://dx.doi.org/10.1016/j.copbio.2008.04.002

5. Vezzullia L., Grandea C., Reidb P.C., et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci USA. 2016;23;113(34): 5062–5071. DOI: 10.1073/pnas.1609157113

6. Men'shikova EA, Kurbatova EM, Titova SV. Ecological features of the persistence of Vibrio cholerae: a retrospective analysis and the current state of the problem. Journal. microbiol., epidemiol. and immunobiol. 2020;97(2):165–173 (in Russ). DOI: https://doi.org/10.36233/0372-9311-2020-97-2-165-173; ISSN0372-9311.

7. Men'shikova EA., Kurbatova EM., Vodop'yanov SO., et al. Evaluation of the ability of cholera vibrios to form a biofilm on the surface of the chitin shell of crayfish. Journal of Microbiology, Epidemiology and Immunobiology. 2021;98(4):434–439 (in Russ). DOI: https://doi.org/10.36233/0372-9311-99.

8. Meibom KL., Li XB., Nielsen AT, et al. The Vibrio cholerae chitin utilization program. Proc. Natl. Acad. ScL USA. 2004;101:2524–2529. DOI: 10.1073/pnas.0308707101

9. Sinha-Ray S., Ali A. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water. Water. Front. Microbiol., 2017 Sec. Aquatic Microbiology. DOI: https://doi.org/10.3389/fmicb.2017.01770

10. Kirn TJ., Jude BA., Taylor RK. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature. 2005; 438: 863–866. DOI: 10.1038/nature04249

11. Waldor MK., Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–1914. DOI: 10.1126/наука.272.5270.1910

12. Meibom KL, Blokesch M, Dolganov NA., et al. Chitin induces natural competence in Vibrio cholerae. Science. 2005;310: 1824–1827. DOI: 10.1126/science.1120096

13. Mondal M, Chatterjee NS. Role of Vibrio cholera exochitinase ChiA2 in horizontal gene transfer. Can J. Microbiol. 2016;62(3):201–209. DOI: 10.1139/cjm-2015-0556

14. Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholera. Curr Open Microbiol. 2016;30:1–7. DOI: 10.1016/j.mib.2015.10.0070

15. Worden AZ., Seidel M, Smriga S, et al. Trophic regulation of Vibrio cholerae in coastal marine waters. Environ. Microbiol. 2006;8:21–29. DOI: https://dx.doi.org/10.1111/j.1462-2920.2005.00863.x

16. Sun S, Tay QXM., Kjelleberg S, et al. Quorum sensing- regulated chitin metabolism provides grazing resistance to Vibrio cholerae biofilms. The ISME Journal. 2015;9(8):1812–1820. DOI: 10.1038/ismej.2014.265

17. Reguera G, Kolter R. Virulence and the environment: a novel role of Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. Journal of bacteriology. 2005;187(10):3551–3555. DOI: 10.1128/JB.187.10.3551-3555.2005

18. Chiavelli DA., Marsh JW., Taylor RK. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl. Environ. Microbiol. 2001;67(7):3220–3225. DOI: 10.1128/AEM.67.7.3220-3225.2001

19. Jude BA., Taylor RK. The physical basis of type 4 pilus-mediated microcolony formation by Vibrio cholerae O1. J. Struct. Biol. 2011;175(1):1–9. DOI: 10.1016/j.jsb.2011.04.008

20. Okulich VK., Kabanova AA., Plotnikov FV. Microbial biofilms in clinical microbiology and antibiotic therapy. Vitebsk: VSMU; 2017:300 (in Russ). ISBN 978-985-466-896-0

21. Vodop'yanov SO, Vodop'yanov AS, Men'shikova EA, Kurbatova EM, Titova SV. A method for modeling biofilms formed by Vibrio cholerae O1 serogroup on the surface of chitin. Patent RUS №2685878; 23.04.2019. Byul. №12 (in Russ).

22. Golovin SN, Titova SV, Simonova IR. Method for obtaining samples of biofilms of cholera vibrios for examination by transmission electron microscopy. Patent RUS № 2662938; 30.07.2018, Byul. №22 (in Russ).

23. Markov EJu, Kulikalova ES, Urbanovich LJa, et al. Chitin and its hydrolysis products in the ecology of Vibrio cholerae. Biocheimiistry. 2015;80(9):1334–1343 (in Russ). DOI: http://dx.doi.org/10.1134/S0006297915090023

24. Duvanova OV, Mishan'kin BN, Vodop'yanov AS, Sorokin VM. N - acetyl-β-D-glucosaminidase of cholera vibrios. Journal. microbiol., epidemiol. immunobiol. 2016;2:41–48 (in Russ). DOI: https://doi.org/10.36233/0372-9311-2016-2-41-48.

25. Golovin SN, Simonova IR, Titova SV, et al. The study of Vibrio cholerae biofilms by transmission electron microscopy. Clinical Laboratory Diagnostics. 2017;62(9):568–576 (in Russ). DOI: http://dx.doi.org/10.18821/0869-2084-2017-63-9-568-576

26. Shahkarami M. Vibrio cholerae biofilm development on natural and artificial chitin substrates. 2005. Master’s Theses. 2839. DOI: https://doi.org/10.31979/etd.5478-vxaj

27. Nahar S, Sultana M, Naser MN, et al. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Frontiers in Microbiology. 2011;2. DOI: https://dx.doi.org/10.3389/fmicb.2011.00260.


Review

For citations:


Titova S.V., Simonova I.R., Menshikova E.A., Osadchaya V.S. Transmission Electronic Microscopy of Vibrio cholerae Biofilms on Chitin-Containing Substrates. Epidemiology and Vaccinal Prevention. 2024;23(1):41-50. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-1-41-50

Views: 454


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)