Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Современные стратегии вакцинопрофилактики Лайм-боррелиоза

https://doi.org/10.31631/2073-3046-2024-23-2-102-113

Аннотация

Актуальность. Лайм-боррелиоз (ЛБ) остается серьезной проблемой здравоохранения, особенно в России, где заболеваемость стабильно сохраняется высокой. На сегодняшний день не существует доступной вакцины против ЛБ, и используются только неспецифические меры профилактики. Цель. Обзор и обобщение данных литературы о прогрессе, подходах и стратегии разработки вакцин против ЛБ. Выводы. Первые вакцины против ЛБ были разработаны в 1990 гг. Вакцина на основе OspA (LYMErix) была доступна на рынке в начале 2000 гг., но не получила широкого распространения. Важным этапом в разработке вакцин против ЛБ стал переход от разработки моновалентных вакцин на основе одного типа внешнего поверхностного белка к мультивалентным комбинированным, обеспечивающим защиту против разных геновидов боррелий. Мультивалентная вакцина на основе OspA (VLA15) находится на III фазе клинических испытаний и, вероятно, станет следующей вакциной против ЛБ, доступной на рынке. Широкий интерес представляют новые подходы к разработке вакцин: генетические, выявление новых иммуногенов, воздействие на разные звенья цикла передачи возбудителей ЛБ.

Об авторах

Н. М. Колясникова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита); ФБУН «ЦНИИ Эпидемиологии» Роспотребнадзора
Россия

Колясникова Надежда Михайловна – д. м. н., ведущий научный сотрудник, заведующая лабораторией клещевого энцефалита и других вирусных энцефалитов, ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита); научный сотрудник лаборатории эпидемиологии природно-очаговых инфекций ФБУН «ЦНИИ Эпидемиологии».

108819, Москва, поселение Московский, посёлок Института полиомиелита, домовладение 8

Тел. +7 (963) 693-08-14



Е. А. Артамонова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита)
Россия

Артамонова Евгения Алексеевна – младший научный сотрудник клинического отдела ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита).

Москва

Тел. +7 (912) 461-09-02



А. А. Еровиченков
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита)
Россия

Еровиченков Александр Анатольевич – д. м. н., профессор, ведущий научный сотрудник, заведующий клиническим отделом, ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита).

Москва

Тел. +7 (903) 719-08-11



С. К. Пылаева
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита)
Россия

Пылаева София Константиновна – младший научный сотрудник клинического отдела ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита).

Москва

Тел. +7 (916) 853-74-94



А. В. Белякова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита)
Россия

Белякова Алла Владимировна – ученый секретарь ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита).

Москва

Тел. +7 (929) 608-90-15



А. А. Ишмухаметов
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М.П. Чумакова РАН» (Институт полиомиелита)
Россия

Ишмухаметов Айдар Айратович – генеральный директор, ФГАНУ «ФНЦИРИП им. М.П. Чумакова РАН» (Институт полиомиелита).

Москва

Тел. +7 (495) 841-90-02



Список литературы

1. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2022 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2023 368 с.

2. Steere AC, Strle F, Wormser GP, et al. Lyme borreliosis. Nature Reviews Disease Primers. 2016;2(1):1–19. doi:10.1038/nrdp.2016.90

3. Mukhacheva TA, Kovalev SY. Borrelia spirochetes in Russia: Genospecies differentiation by real-time PCR. Ticks and Tick-borne Diseases. 2014;5(6):722–6. doi:10.1016/j.ttbdis.2014.05.016

4. Marques AR, Strle F, Wormser GP. Comparison of Lyme Disease in the United States and Europe. Emerging Infectious Diseases. 2021;27(8):2017–24. doi:10.3201/eid2708.204763

5. Steere AC, Malawista SE, Snydman DR, et al. An epidemic of oligoarticular arthritis in children and adults in three connecticut communities. Arthritis & Rheumatism. 1977;20(1):7–17. doi:10.1002/art.1780200102

6. Steere AC. Lyme Disease. New England Journal of Medicine. 1989;321(9):586–96. doi:10.1056/NEJM198908313210906

7. Burgdorfer W, Barbour AG, Hayes SF, et al. Lyme Disease—a Tick-Borne Spirochetosis? Science. 1982;216(4552):1317–19. doi:10.1126/science.7043737

8. Åsbrink E, Hovmark A. Classification, geographic variations, and epidemiology of Lyme borreliosis. Clinics in Dermatology. 1993;11(3):353–7. doi:10.1016/0738-081X(93)90089-U

9. Лобзин Ю. В. Иксодовые клещевые боррелиозы у детей и взрослых: Методические рекомендации для врачей. СПб.: ФГУ «НИИДИ ФМБА», 2010 г.

10. Kullberg BJ, Vrijmoeth HD, van de Schoor F, et al. Lyme borreliosis: diagnosis and management. British Medical Journal. 2020;369:m1041. doi:10.1136/bmj.m1041

11. Nadelman RB, Nowakowski J, Fish D, et al. Tick Bite Study Group. Prophylaxis with single-dose doxycycline for the prevention of Lyme disease after an Ixodes scapularis tick bite. New England Journal of Medicine. 2001;345(2):79–84. doi: 10.1056/NEJM200107123450201.

12. Harms MG, Hofhuis A, Sprong H, et al. A single dose of doxycycline after an ixodes ricinus tick bite to prevent Lyme borreliosis: An open-label randomized controlled trial. Journal of Infection. 2021;82(1):98–104. doi:10.1016/j.jinf.2020.06.032

13. O’Bier NS, Hatke AL, Camire AC, et al. Human and Veterinary Vaccines for Lyme Disease. Current Issues in Molecular Biology. 2021;42:191–222. doi: 10.21775/cimb.042.191

14. de Silva AM, Fikrig E. Arthropod- and host-specific gene expression by Borrelia burgdorferi. Journal of Clinical Investigation. 1997;99(3):377–9. doi: 10.1172/JCI119169

15. Grimm D, Tilly K, Byram R, et al. Outer-surface protein C of the Lyme disease spirochete: A protein induced in ticks for infection of mammals. Proceedings of the National Academy of Sciences. 2004;101(9):3142–7. doi:10.1073/pnas.0306845101

16. Wilske B, Busch U, Fingerle V, et al. Immunological and molecular variability of OspA and OspC. Implications for Borrelia vaccine development. Infection. 1996;24(2):208–12. doi:10.1007/BF01713341

17. Wilske B, Jauris-Heipke S, Lobentanzer R, et al. Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. Journal of Clinical Microbiology. 1995;33(1):103–9. doi: 10.1128/jcm.33.1.103-109.1995

18. Lin T, Oliver, Jr. JH, Gao L. Genetic diversity of the outer surface protein C gene of southern borrelia isolates and its possible epidemiological, clinical, and pathogenetic implications. Journal of Clinical Microbiology. 2002;40(7):2572–83. doi:10.1128/JCM.40.7.2572-2583.2002

19. Seinost G, Dykhuizen DE, Dattwyler RJ, et al. Four Clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infection and Immunity. 1999;67(7):3518–24. doi: 10.1128/IAI.67.7.3518-3524.1999

20. Wang IN, Dykhuizen DE, Qiu W, et al. Genetic diversity of OspC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999;151(1):15–30. doi: 10.1093/genetics/151.1.15

21. Earnhart CG, Marconi RT. OspC phylogenetic analyses support the feasibility of a broadly protective polyvalent chimeric Lyme Disease vaccine. Clinical and Vaccine Immunology. 2007;14(5):628–34. doi:10.1128/CVI.00409-06

22. de Taeye SW, Kreuk L, van Dam AP, et al. Complement evasion by Borrelia burgdorferi: it takes three to tango. Trends in Parasitology. 2013;29(3):119–28. doi:10.1016/j.pt.2012.12.001

23. Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks and Tick-borne Diseases. 2013;4(1):26–34. doi:10.1016/j.ttbdis.2012.10.039

24. Zhang JR, Hardham JM, Barbour AG, et al. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997;89(2):275–85. doi:10.1016/S0092-8674(00)80206-8

25. Richer LM, Brisson D, Melo R, et al. Reservoir Targeted Vaccine Against Borrelia burgdorferi: A New Strategy to Prevent Lyme Disease Transmission. Journal of Infectious Diseases. 2014;209(12):1972–80. doi:10.1093/infdis/jiu005

26. Stafford KC 3rd, Williams SC, van Oosterwijk JG, et al. Field evaluation of a novel oral reservoir-targeted vaccine against Borrelia burgdorferi utilizing an inactivated whole-cell bacterial antigen expression vehicle. Experimental & applied acarology. 2020;80(2):257–68. doi:10.1007/s10493-019-00458-1

27. Tsao JI, Wootton JT, Bunikis J, et al. An ecological approach to preventing human infection: Vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proceedings of the National Academy of Sciences. 2004;101(52):18159–64. doi:10.1073/pnas.0405763102

28. Probert WS, LeFebvre RB. Protection of C3H/HeN mice from challenge with Borrelia burgdorferi through active immunization with OspA, OspB, or OspC, but not with OspD or the 83-kilodalton antigen. Infection and Immunity. 1994;62(5):1920–26. doi: 10.1128/iai.62.5.1920-1926.1994.

29. Probert WS, Crawford M, Cadiz RB, et al. Immunization with outer surface protein (Osp) A, but not OspC, provides cross-protection of mice challenged with North American isolates of Borrelia burgdorferi. Journal of Infectious Diseases. 1997;175(2):400–5. doi:10.1093/infdis/175.2.400

30. Gilmore RD, Bacon RM, Carpio AM, et al. Inability of outer-surface protein C (OspC)-primed mice to elicit a protective anamnestic immune response to a tick-transmitted challenge of Borrelia burgdorferi. Journal of Medical Microbiology. 2003;52(Pt 7):551–6. doi:10.1099/jmm.0.05068-0

31. Izac JR, O’Bier NS, Oliver LD, et al. Development and optimization of OspC chimeritope vaccinogens for Lyme disease. Vaccine. 2020;38(8):1915–24. doi:10.1016/j.vaccine.2020.01.027

32. Telford SR, Fikrig E, Barthold SW, et al. Protection against antigenically variable Borrelia burgdorferi conferred by recombinant vaccines. Journal of Experimental Medicine. 1993;178(2):755–8. doi:10.1084/jem.178.2.755

33. Gilmore RD, Kappel KJ, Dolan MC, et al. Outer surface protein C (OspC), but not P39, is a protective immunogen against a tick-transmitted Borrelia burgdorferi challenge: evidence for a conformational protective epitope in OspC. Infection and Immunity. 1996;64(6):2234–9. doi:10.1128/iai.64.6.2234-2239.1996

34. Nguyen TP, Lam TT, Barthold SW, et al. Partial destruction of Borrelia burgdorferi within ticks that engorged on OspE- or OspF-immunized mice. Infection and Immunity. 1994;62(5):2079– 84. doi: 10.1128/iai.62.5.2079-2084.1994

35. Marcinkiewicz AL, Lieknina I, Kotelovica S, et al. Eliminating Factor H-Binding Activity of Borrelia burgdorferi CspZ Combined with Virus-Like Particle Conjugation Enhances Its Efficacy as a Lyme Disease Vaccine. Frontiers in Immunology. 2018;9:181. doi:10.3389/fimmu.2018.00181

36. Marcinkiewicz AL, Lieknina I, Yang X, et al. The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease. Infection and Immunity. 2020;88(5):e00956–19. doi:10.1128/IAI.00956-19

37. Liang FT, Jacobs MB, Philipp MT. C-Terminal Invariable Domain of VlsE May Not Serve as Target for Protective Immune Response against Borrelia burgdorferi. Infection and Immunity. 2001;69(3):1337–43. doi:10.1128/IAI.69.3.1337-1343.2001

38. Fikrig E, Barthold SW, Sun W, et al. Borrelia burgdorferi P35 and P37 Proteins, Expressed In Vivo, Elicit Protective Immunity. Immunity. 1997;6(5):531–9. doi:10.1016/S1074-7613(00)80341-6

39. Fikrig E, Feng W, Barthold SW, et al. Arthropod- and Host-Specific Borrelia burgdorferi bbk32 Expression and the Inhibition of Spirochete Transmission1. The Journal of Immunology. 2000;164(10):5344–51. doi:10.4049/jimmunol.164.10.5344

40. Brown EL, Kim JH, Reisenbichler ES, et al. Multicomponent Lyme vaccine: Three is not a crowd. Vaccine. 2005;23(28):3687–96. doi:10.1016/j.vaccine.2005.02.006

41. Kumar M, Kaur S, Kariu T, et al. Borrelia burgdorferi BBA52 is a potential target for transmission blocking Lyme disease vaccine. Vaccine. 2011;29(48):9012–19. doi:10.1016/j.vaccine.2011.09.035

42. Kung F, Kaur S, Smith AA, et al. A Borrelia burgdorferi Surface-Exposed Transmembrane Protein Lacking Detectable Immune Responses Supports Pathogen Persistence and Constitutes a Vaccine Target. Journal of Infectious Diseases. 2016;213(11):1786–95. doi:10.1093/infdis/jiw013

43. Klouwens MJ, Trentelman JJ, Ersoz JI, et al. Investigating BB0405 as a novel Borrelia afzelii vaccination candidate in Lyme borreliosis. Scientific Reports. 2021;11:4775. doi:10.1038/s41598-021-84130-y

44. Singh P, Verma D, Backstedt BT, et al. Borrelia burgdorferi BBI39 Paralogs, Targets of Protective Immunity, Reduce Pathogen Persistence Either in Hosts or in the Vector. Journal of Infectious Diseases. 2017;215(6):1000–9. doi:10.1093/infdis/jix036

45. Exner MM, Wu X, Blanco DR, et al. Protection Elicited by Native Outer Membrane Protein Oms66 (p66) against Host-Adapted Borrelia burgdorferi: Conformational Nature of Bactericidal Epitopes. Infection and Immunity. 2000;68(5):2647–654. doi: 10.1128/IAI.68.5.2647-2654.2000

46. Small CM, Ajithdoss DK, Rodrigues Hoffmann A, et al. Immunization with a Borrelia burgdorferi BB0172-Derived Peptide Protects Mice against Lyme Disease. PLoS One. 2014;9(2):e88245. doi:10.1371/journal.pone.0088245

47. Hassan WS, Giaretta PR, Rech R, et al. Enhanced protective efficacy of Borrelia burgdorferi BB0172 derived-peptide based vaccine to control Lyme disease. Vaccine. 2019;37(37):5596–06. doi:10.1016/j.vaccine.2019.07.092

48. Hanson MS, Cassatt DR, Guo BP, et al. Active and Passive Immunity against Borrelia burgdorferi Decorin Binding Protein A (DbpA) Protects against Infection. Infection and Immunity. 1998;66(5):2143–53. doi: 10.1128/IAI.66.5.2143-2153.1998

49. Hagman KE, Yang X, Wikel SK, et al. Decorin-Binding Protein A (DbpA) of Borrelia burgdorferi Is Not Protective When Immunized Mice Are Challenged via Tick Infestation and Correlates with the Lack of DbpA Expression by B. burgdorferi in Ticks. Infection and Immunity. 2000;68(8):4759–64. doi: 10.1128/IAI.68.8.4759-4764.2000

50. Floden AM, Gonzalez T, Gaultney RA, et al. Evaluation of RevA, a fibronectin-binding protein of Borrelia burgdorferi, as a potential vaccine candidate for Lyme disease. Clinical and Vaccine Immunology. 2013;20(6):892–9. doi:10.1128/CVI.00758-12

51. Brandt KS, Patton TG, Allard AS, et al. Evaluation of the Borrelia burgdorferi BBA64 protein as a protective immunogen in mice. Clinical and Vaccine Immunology. 2014;21(4):526–33. doi:10.1128/CVI.00824-13

52. Keller D. Safety and Immunogenicity of a Recombinant Outer Surface Protein A Lyme Vaccine. JAMA. 1994;271(22):1764. doi:10.1001/jama.1994.03510460056033

53. Wormser GP, Nowakowski J, Nadelman RB, et al. Efficacy of an OspA vaccine preparation for prevention of Lyme disease in New York State. Infection. 1998;26(4):208–12. doi:10.1007/BF02962365

54. Sigal LH, Zahradnik JM, Lavin P, et al. A Vaccine Consisting of Recombinant Borrelia burgdorferi Outer-Surface Protein A to Prevent Lyme Disease. New England Journal of Medicine. 1998;339(4):216–22. doi:10.1056/NEJM199807233390402

55. Schoen RT, Meurice F, Brunet CM, et al. Safety and immunogenicity of an outer surface protein A vaccine in subjects with previous Lyme disease. Journal of Infectious Diseases. 1995;172(5):1324–9. doi:10.1093/infdis/172.5.1324

56. Van Hoecke C, Comberbach M, De Grave D, et al. Evaluation of the safety, reactogenicity and immunogenicity of three recombinant outer surface protein (OspA) Lyme vaccines in healthy adults. Vaccine. 1996;14(17):1620–6. doi:10.1016/S0264-410X(96)00146-6

57. Steere AC, Sikand VK, Meurice F, et al. Vaccination against Lyme Disease with Recombinant Borrelia burgdorferi Outer-Surface Lipoprotein A with Adjuvant. New England Journal of Medicine. 1998;339(4):209–15. doi:10.1056/NEJM199807233390401

58. Van Hoecke C, Lebacq E, Beran J, et al. Alternative vaccination schedules (0, 1, and 6 months versus 0, 1, and 12 months) for a recombinant OspA Lyme disease vaccine. Clinical and Vaccine Immunology. 1999;28(6):1260–4. doi:10.1086/514779

59. Schoen RT, Sikand VK, Caldwell MC, et al. Safety and immunogenicity profile of a recombinant outer-surface protein a Lyme disease vaccine: Clinical trial of a 3-dose schedule at 0, 1, and 2 months. Clinical Therapeutics. 2000;22(3):315–25. doi:10.1016/S0149-2918(00)80035-1

60. Schoen RT, Deshefy-Longhi T, Van-Hoecke C, et al. An open-label, nonrandomized, single-center, prospective extension, clinical trial of booster dose schedules to assess the safety profile and immunogenicity of recombinant outer-surface protein A (OspA) Lyme disease vaccine. Clinical Therapeutics. 2003;25(1):210–24. doi:10.1016/S0149-2918(03)90027-0

61. Wressnigg N, Pöllabauer EM, Aichinger G, et al. Safety and immunogenicity of a novel multivalent OspA vaccine against Lyme borreliosis in healthy adults: a double-blind, randomised, dose-escalation phase 1/2 trial. The Lancet Infectious Diseases. 2013;13(8):680–9. doi:10.1016/S1473-3099(13)70110-5

62. Wressnigg N, Barrett PN, Pöllabauer EM, et al. A Novel Multivalent OspA Vaccine against Lyme Borreliosis Is Safe and Immunogenic in an Adult Population Previously Infected with Borrelia burgdorferi Sensu Lato. Clinical and Vaccine Immunology. 2014;21(11):1490–9. doi:10.1128/CVI.00406-14

63. Comstedt P, Hanner M, Schüler W, et al. Design and Development of a Novel Vaccine for Protection against Lyme Borreliosis. PLoS One. 2014;9(11):e113294. doi:10.1371/journal.pone.0113294

64. Comstedt P, Schüler W, Meinke A, et al. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE. 2017;12(9):e0184357. doi:10.1371/journal.pone.0184357

65. Bézay N, Hochreiter R, Kadlecek V, et al. Safety and immunogenicity of a novel multivalent OspA-based vaccine candidate against Lyme borreliosis: a randomised, phase 1 study in healthy adults. Lancet Infectious Diseases. 2023;23(10):1186–96. doi: 10.1016/S1473-3099(23)00210-4.

66. Pfizer. Immunogenicity and Safety Study of VLA15, A Multivalent Recombinant OspA (Outer Surface Protein A) Based Vaccine Candidate Against Lyme Borreliosis, in Healthy Adults Aged 18 to 65 Years. A Randomized, Controlled, Observer-Blind Phase 2 Study. Доступно на:/ Available at: https://clinicaltrials.gov/study/NCT03769194. Ссылка активна на: /Accessed: 4 Oct 2023.

67. Pfizer. Alternative schedule study for VLA15, a multivalent recombinant OspA based vaccine candidate against Lyme borreliosis, in healthy adults aged 18 to 65 years – a randomized, controlled, observer-blind phase 2 study. Доступно на:/Available at: https://clinicaltrials.gov/study/NCT03970733. Ссылка активна на: /Accessed: 4 Oct 2023.

68. Pfizer. Safety and immunogenicity study of VLA15, a multivalent recombinant OspA based vaccine candidate against Lyme borreliosis: a randomized, controlled, observer-blind phase 2 study in a healthy pediatric and adult study population. Доступно на:/Available at: https://clinicaltrials.gov/study/NCT04801420. Ссылка активна на: /Accessed: 4 Oct 2023.

69. Pfizer. A Phase 3, Multicenter, Placebo-Controlled, Randomized, Observer-Blinded Trial to Evaluate the Efficacy, Safety, Tolerability, Immunogenicity, and Lot Consistency of a 6-Valent OspA-Based Lyme Disease Vaccine in Healthy Participants ≥5 Years of Age. Доступно на:/Available at: https://clinicaltrials.gov/study/NCT05477524. Ссылка активна на: /Accessed: 4 Oct 2023.

70. Dattwyler RJ, Gomes-Solecki M. The year that shaped the outcome of the OspA vaccine for human Lyme disease. NPJ Vaccines. 2022;7(1):1–5. doi:10.1038/s41541-022-00429-5

71. Feder HM, Beran J, Van Hoecke C, et al. Immunogenicity of a recombinant Borrelia burgdorferi outer surface protein A vaccine against Lyme disease in children. Journal of Pediatrics. 1999;135(5):575–9. doi:10.1016/s0022-3476(99)70055-7

72. Beran J, De Clercq N, Dieussaert I, et al. Reactogenicity and immunogenicity of a Lyme disease vaccine in children 2-5 years old. Clinical Infectious Diseases. 2000;31(6):1504–7. doi:10.1086/317479

73. Sikand VK, Halsey N, Krause PJ, et al. Safety and Immunogenicity of a Recombinant Borrelia burgdorferi Outer Surface Protein A Vaccine Against Lyme Disease in Healthy Children and Adolescents: A Randomized Controlled Trial. Pediatrics. 2001;108(1):123–8. doi:10.1542/peds.108.1.123

74. Nocton JJ, Dressler F, Rutledge BJ, et al. Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. New England Journal of Medicine. 1994;330(4):229–234. doi:10.1056/NEJM199401273300401

75. Vaccines and Related Biological Products Advisory Committee (VRBPAC) Meeting. Open Public Hearing on LYMErix, recombinant Lipoproteins OspA Lyme Vaccine from SmithKIine Beecham Pharmaceuticals. Court Transcript. Neal R. Gross, Court Reporters and Transcribers, 1–325. Доступно на:/Available at: https://962b5f1f-2df4-46ae-a813-250638ec1c9e.filesusr. com/ugd/47b066_a772f2892cfd41a4915d27f6112148a7.pdf. Ссылка активна на:/Accessed: 4 Oct 2023.

76. Mathiesen DA, Oliver JH, Kolbert CP, et al. Genetic heterogeneity of Borrelia burgdorferi in the United States. Journal of Infectious Diseases. 1997;175(1):98-107. doi:10.1093/infdis/175.1.98

77. Recommendations for the use of Lyme disease vaccine. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recommendations and Reports. 1999;48(RR-7):1–17, 21–25.

78. Nigrovic LE, Thompson KM. The Lyme vaccine: a cautionary tale. Epidemiology and Infection. 2007;135(1):1–8. doi:10.1017/S0950268806007096

79. Rosé CD, Fawcett PT, Gibney KM. Arthritis following recombinant outer surface protein A vaccination for Lyme disease. The Journal of Rheumatology. 2001;28(11):2555–7.

80. Lathrop SL, Ball R, Haber P, et al. Adverse event reports following vaccination for Lyme disease: December 1998-July 2000. Vaccine. 2002;20(11-12):1603–8. doi:10.1016/s0264-410x(01)00500-x

81. Wormser GP. A brief history of OspA vaccines including their impact on diagnostic testing for Lyme disease. Diagnostic Microbiology and Infectious Disease. 2022;102(1):115572. doi:10.1016/j.diagmicrobio.2021.115572

82. Marconi RT, Garcia-Tapia D, Hoevers J, et al. VANGUARD®crLyme: A next generation Lyme disease vaccine that prevents B. burgdorferi infection in dogs. Vaccine X. 2020;6:100079. doi:10.1016/j.jvacx.2020.100079

83. Kamp HD, Swanson KA, Wei RR, et al. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines. 2020;5:33. doi:10.1038/s41541-020-0183-8

84. Earnhart CG, Buckles EL, Dumler JS, et al. Demonstration of OspC Type Diversity in Invasive Human Lyme Disease Isolates and Identification of Previously Uncharacterized Epitopes That Define the Specificity of the OspC Murine Antibody Response. Infection and Immunity. 2005;73(12):7869–77. doi:10.1128/IAI.73.12.7869-7877.2005

85. Oliver LD, Earnhart CG, Virginia-Rhodes D, et al. Antibody profiling of canine IgG responses to the OspC protein of the Lyme disease spirochetes supports a multivalent approach in vaccine and diagnostic assay development. Veterinary Journal. 2016;218:27–33. doi:10.1016/j.tvjl.2016.11.001

86. Earnhart CG, Buckles EL, Marconi RT. Development of an OspC-based tetravalent, recombinant, chimeric vaccinogen that elicits bactericidal antibody against diverse Lyme disease spirochete strains. Vaccine. 2007;25(3):466–80. doi:10.1016/j.vaccine.2006.07.052

87. Earnhart CG, Marconi RT. Construction and analysis of variants of a polyvalent Lyme disease vaccine: approaches for improving the immune response to chimeric vaccinogens. Vaccine. 2007;25(17):3419–27. doi:10.1016/j.vaccine.2006.12.051

88. Earnhart CG, Marconi RT. An octavalent lyme disease vaccine induces antibodies that recognize all incorporated OspC type-specific sequences. Human Vaccines & Immunotherapeutics. 2007;3(6):281–9. doi:10.4161/hv.4661

89. Hahn BL, Padmore LJ, Ristow LC, et al. Live Attenuated Borrelia burgdorferi Targeted Mutants in an Infectious Strain Background Protect Mice from Challenge Infection. Clinical and Vaccine Immunology. 2016;23(8):725–31. doi:10.1128/CVI.00302-16

90. Simon MM, Gern L, Hauser P, et al. Protective immunization with plasmid DNA containing the outer surface lipoprotein A gene of Borrelia burgdorferi is independent of an eukaryotic promoter. European Journal of Immunology. 1996;26(12):2831–40. doi:10.1002/eji.1830261206

91. Luke CJ, Carner K, Liang X, et al. An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi. Journal of Infectious Diseases. 1997;175(1):91–7. doi:10.1093/ infdis/175.1.91

92. Scheiblhofer S, Weiss R, Dürnberger H, et al. A DNA vaccine encoding the outer surface protein C from Borrelia burgdorferi is able to induce protective immune responses. Microbes and Infection. 2003;5(11):939–46. doi:10.1016/s1286-4579(03)00182-5

93. Wagemakers A, Mason LMK, Oei A, et al. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection. Gene Therapy. 2014;21(12):1051–7. doi:10.1038/gt.2014.87

94. Guibinga GH, Sahay B, Brown H, et al. Protection against Borreliella burgdorferi infection mediated by a synthetically engineered DNA vaccine. Human Vaccines & Immunotherapeutics. 16(9):2114–22. doi:10.1080/21645515.2020.1789408


Рецензия

Для цитирования:


Колясникова Н.М., Артамонова Е.А., Еровиченков А.А., Пылаева С.К., Белякова А.В., Ишмухаметов А.А. Современные стратегии вакцинопрофилактики Лайм-боррелиоза. Эпидемиология и Вакцинопрофилактика. 2024;23(2):102-113. https://doi.org/10.31631/2073-3046-2024-23-2-102-113

For citation:


Kolyasnikova N.M., Artamonova E.A., Erovichenkov A.A., Pylaeva S.K., Belyakova A.V., Ishmukhametov A.A. Current Strategies for Vaccine Prophylaxis of Lyme Disease. Epidemiology and Vaccinal Prevention. 2024;23(2):102-113. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-2-102-113

Просмотров: 662


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)