Оrthopoxviruses of New World: review of scientific literature
https://doi.org/10.31631/2073-3046-2025-24-4-106-114
Abstract
Relevance. 3 agents raccoonpox, skunkpox and volepox belonged to orthopoxviruses of the New World until 2015 years. In last ten-years period skunkpox virus using as vector for creation recombinant vaccines for animals. After 2015 years this group supplemented some more agent primary called virus Alaska, was isolated from ill man. After 2020 years 6 causes of illness by this virus, now named borealpox virus, was registries. Aim. Summary of available information on viruses endemic to the North American continent. Evaluations of еffectivity vaccines on the base virus raccoonpox in laboratory conditions and in Wild World. Monitoring of changes pathogencity virus borealpox by clinical symptoms at infected peoples. Materials. The work uses data from publications posted on the websites of international biomedical research search engines% PubMed, Web of Science, Embase, etc. Results and discussion. Raccoon, skunk and vole smallpox viruses endemic to North America, isolated from their host animals, have specific features that affect their distribution in nature. The high degree of genetic similarity between orthopoxvirus species suggests that rodents may represent the primary ecological reservoir for members of this genus. The most studied representative of the raccoon pox pathogen has an attenuated phenotype and is used as a vector for the creation of vaccine preparations. Based on the construction of a phylogenetic tree, it was found that the orthopoxviruses of the New World are closely related to the orthopoxviruses of the Old World (Eurasia and Africa), and the Alaska virus, capable of infecting humans, forms a separate monophyletic branch. Sequencing of the Alaska virus genome revealed that its closest relative is the Akhmet virus. Human infection with the boreal smallpox virus occurs through contact with small mammals. Conclusion. Analysis of the published data makes it possible to establish that raccoonpox, skunkpox and volepox viruses are not pathogenic to humans. Vaccines on the base virus raccoonpox is immunogenicity and safety for animals and can using as baits. Virus borealpox evoke variola-like disease, proceed in light form at immunedominante peoples. Infected of man by this virus origin by contacts with small mammalians. Study of genomic virus structures all 4 orthopoxviruses of New World allowed conducting their phylogenetic analysis. Established, that raccoonpox, skunkpox and volepox viruses form these parating branch relatively other orthopoxviruses species. Agent of borealpox form the fisting monophyletic branch with localization between orthopoxviruses Old World and New Word, but narrowly related with orthopoxviruses Old World and this relationship execute still on the level of their ancestors.
About the Authors
L. F. StovbaRussian Federation
Ludmila F. Stovba – Cand. Sci. (Biol.), Senior Researcher of the Department
+7 (496) 552-12-06
O. V. Chukhralia
Russian Federation
Oleg V. Chukhralia – Deputy Head of the Department
+7 (496) 552-12-06
A. A. Petrov
Russian Federation
Alexander A. Petrov –Dr. Sci. (Med.), Chief of the Directorate
+7 (496) 552-12-06
S. A. Melnikov
Russian Federation
Sergey A. Melnikov – Cand. Sci. (Biol.), Senior Researcher
+7 (496) 552-12-06
D. P. Belozerov
Russian Federation
Dеnis P. Belozerov – Senior Researcher
+7 (496) 552-12-06
M. A. Filippova
Russian Federation
Maria A. Filippova – 6th year student
+7 (916) 811-97-27
V. A. Kovalchuk
Russian Federation
Vladimir A. Kovalchuk – 6th year student
+7 (916) 811-97-27
S. V. Borisevich
Russian Federation
Sergey V. Borisevich – Dr. Sci. (Biol.), Professor, The RAS Academician, Chief of the Institute
+7 (496) 552-12-06
References
1. Onishchenko GG, Sizikova TE, Lebedev VN, Borisevich SV. New members of the genus Orthopoxvirus. Infektsionnye bolezni: novosti, mneniya, obuchenie [Infectious Diseases: News, Opinions, Training]. 2023;12(2):8–13. (in Russian) doi: https://doi.org/10.33029/2305-3496-2023-12-2-8-13
2. Supotnitskiy M.V. Alaskapox amid New Orthopox Viral Infections Mikhail V. Supotnitskiy. Journal of NBC Protection Corps. 2024;8(2):122–134. (in Russian) doi: https://doi.org/10.35825/2587-5728-2024-8-2-122-134
3. Herman Y. Isolation and characterization of a naturally occurring poxvirus of raccoons. In: Kallio RE, editor. Bacteriological Proceedings of the 64 th Annual Meeting of the American Society for Microbiology (1964); 1964 May 3-7. American Society for Microbiology; Washington, D.C.: 1964. p. 117.
4. Emerson GL, Li Y, Frace MA, et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS One. 2009;4(10):e7666. doi: 10.1371/journal.pone.0007666
5. Yager JA, Hutchison L, Barrett JW. Raccoonpox in a Canadian cat. Vet Dermatol. 2006;17(6):443–8. doi: 10.1111/j.1365-3164.2006.00553.x
6. Rocke TE, Dein FJ, Fuchsberger M, et al. Limited infection upon human exposure to a recombinant raccoon pox vaccine vector. Vaccine. 2004;22(21-22):2757–60. doi: 10.1016/j.vaccine.2004.01.030
7. Gallardo-Romero NF, Drew CP, Weiss SL, et al. The pox in the North American backyard: Volepox virus pathogenesis in California mice (Peromyscus californicus). PLoS ONE. 2012;7(8): e43881. doi: 10.1371/journal.pone.0043881
8. Haller SL, Peng C, McFadden G, et al. Poxviruses and the evolution of host range and virulence. Infection, Genetics and Evolution. 2014;21:15–40. doi: 10.1016/j.meegid.2013.10.014
9. Regnery DC. Isolation and partial characterization of an orthopoxvirus from a California vole (Microtus californicus). Brief report. Arch. Virol. 1987;94(1-2):159–62. doi: 10.1007/BF01313734
10. Gallardo-Romero NF, Velasco-Villa A, Weiss SL, et al. Detection of North American orthopoxviruses by real time-PCR. Virology Journal. 2011;8:313. doi: 10.1186/1743-422x-8-313
11. Fashina Т, Huang Y, Thomas J, et al. Ophthalmic Features and Implications of Poxviruses: Lessons from Clinical and Basic Research Microorgan-isms.2022;10(12):2487. doi: 10.3390/microorganisms10122487
12. Li Y, Carroll DS, Gardner SN, et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. 2007;104(40):15787–92. doi: 10.1073/pnas.0609268104
13. Fleischauer C, Upton C, Victoria J, et al. Genome sequence and comparative virulence of raccoonpox virus: the first North American poxvirus sequence. J. Gen. Virol. 2015;96(9):2806–21. doi: 10.1099/vir.0.000202
14. Jones GJB, Boles C, Roper RL. Raccoonpox virus safety in immunocompromised and pregnant mouse models. Vaccine. 2014;32(31):3977–81. doi: 10.1016/j.vaccine.2014.05.018
15. Rocke TE, Kingstad-Bakke B, Wuthrich M, et al. Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Sci. Rep. 2019;9(1):6788. doi: 10.1038/s41598-019-43210-w
16. Stading B, Ellison JA, Carson WC, et al. Protection of bats (Eptesicus fuscus) against rabies following topical or oronasal exposure to a recombinant raccoon poxvirus vaccine. PLoS Negl. Trop. Dis. 2017;11(10):e0005958. doi: 10.1371/journ al. pntd. 0005958
17. DeMartini JC, Bickle HM, Brodie SJ, et al. Raccoon poxvirus rabies virus glycoprotein recombinant vaccine in sheep. Arch. Virol. 1993;133(1-2):211–22. doi: 10.1007/BFO1309757
18. Hwa S.-H, Iams KP, Hall JS, et al. Characterization of recombinant raccoon pox vaccine vectors in chickens. Avian Dis.2010;54(4):1157–65. doi: 10.1637/9313-032410-Per.1
19. Rocke TE, Smith SR, Stinchcomb DT, et al. Immunization of black-tailed prairie dog against plague through consumption of vaccine-laden baits. J. Wildl. Dis. 2008;44(4):930–7. doi: 10.7589/0090-3558-44.4.930
20. Osorio JE, Powell T, Frank RS, et al. Raccoon poxvirus as a mucosal vac-cine vector for domestic cats. J. Drag. Target. 2003;11(8-10):463–70. doi: 10.1080/10611860410001670062
21. Wunner WWH, Conzelmann K-K. Rabies Virus. In: Jackson AC, editor. Rabies: Scientific Basis of the Disease and its Management. Third. Oxford: Elsevier; 2013. pp. 17–49. doi: 10.1016/b978-0-12-396547-9.00002-x
22. Johnson N, Are´chiga-Ceballos N, Aguilar-Setien A. Vampire Bat Rabies: Ecology, Epidemiology and Control. Viruses. 2014;6(5):1911–28. doi: 10.3390/v6051911
23. Anderson A, Shwiff S, Gebhardt K, et al. Economic evaluation of vampire bat (Desmodus rotundus) rabies prevention in Mexico. Transbound Emerg Dis. 2014;61(2):140–6. doi: 10.1111/tbed.12007
24. Malavé CM, Lopera-Madrid J, Medina-Magües LG, et al. Impact of Molecu-lar Modifications on the Immunogenicity and Efficacy of Recombinant Raccoon Pox-virus-Vec-tored Rabies Vaccine Candidates in Mice. Vaccines. 2021;9(12):1436.doi: 10.3390/vaccines9121436
25. Cárdenas-Canales EM, Gigante CM, Greenberg L, et al. Clinical presentation and serologic response during a rabies epizootic in Captive common vampire bats (Desmodus rotundus). Trop. Med. Infect. Dis. 2020;5(1):34. doi: 10.3390/tropicalmed5010034
26. Malavé CM, Lopera-Madrid J, Medina-Magües LG, et al. In Vitro Expression, Immunogenicity, and Efficacy Data from Recombinant Raccoon Poxvirus-Vectored Rabies Vaccine Candidates Tested in Mice; U.S. Geological Survey Data Release: Reston, VA, USA, 2021. URL: https://www.sciencebase.gov/catalog/item/6196c135d34eb622f691acc6 (дата обращения: 08.05.2025)
27. Medina-Magues ES, Lopera-Madrid J, Lo MK, et al. Immunogenicity of poxvirus based vaccines against Nipah virus. Scientific Reports. 2023;13(1):11384. doi: 10.1038/s41598-023-38010-2
28. Brewoo JN, Powell TD, Stinchcomb DT, et al. Efficacy and safety of a modified vaccinia Ankara (MVA) vectored plague vaccine in mice. Vaccine. 2010;28(36):5891–9.doi: 10.1016/j.vaccine.2010.06054
29. Gilbert SC, Moorthy VS, Andrews L, et al. Synergistic DNA-MVA prime-boost vaccination regimes for malaria and tuberculosis. Vaccine. 2006;24(2):4554–61. doi: 10.1016/j. vaccine.2005.08.048
30. Brewooa JN, Powellb TD, Jonesa JC, et al. Cross-protective immunity against multiple influenza virus subtypes by a novel modified vaccinia Ankara (MVA) vectored vaccine in mice. Vaccine. 2013;31(14):1848–55. doi: 10.1016/j.vaccine.2013.01.038
31. Knight JC, Goldsmith CS, Tamin A, et al. Further analyses of the orthopoxviruses volepox virus and raccoon poxvirus. Virology. 1992;190(1):423–33. doi: 10.1016/0042-6822(92)91228-m
32. Meyer H, Ropp SL, Esposito JJ. Gene for A-type inclusion body protein is useful for a polymerase chain reaction assay to differentiate orthopoxviruses. J. Virol. Methods. 1997;64(2):217–21. doi: 10.1016/s0166-0934(96)-2155-6
33. Lefkowitz EJ, Wang C, Upton C. Poxviruses: Past, present, and future. Virus Res. 2006;117(1):105–18. doi: 10.1016/j.virusres.2006.01.016
34. Springer YP, Hsu CH, Werle ZR, et al. Novel orthopoxvirus infection in an Alaska resident. Clin. Infec. Disease. 2017;64(12):1737–41. doi: 10.1093/cid/cix2019
35. Oliveira Silva NI, de Oliveira JS, Kroon EG, et al. Here, There, and Every-where: The Wide Host Range and Geogrаphic Distribution of Zoonotic Orthopoxviruses. Viruses. 2021;13(1):43. doi: 10.3390/v13010043
36. Gigante CM, Gao J, Tang S, et al. Genome of Alaskapox virus, a novel orthopoxvirus isolated from Alaska. Viruses. 2019;11(8):708. doi:10.3390/v11080708
37. Gubser C, Hue S, Kellam P, et al. Poxvirus genomes: A phylogenetic analy-sis. J. Gen. Virol. 2004;85(1):105–17. doi:10.1099/vir.0.19565-0
38. Smithson C, Tang N, Sammons S, et al. The genomes of three North American orthopoxviruses. Virus Genes. 2017;53(1):21–34. doi:10/1007/s11262-016-1388-9
39. Babkin IV, Babkina IN, Tikunova NV. An Update of Orthopoxvirus Molecular Evolution. Viruses. 2022;14(2):388–401. doi: 10.3390/v14020388
40. Dyer O. Alaskapox: First human death from zoonotic virus is announced. BMJ. 2024;384:q415. doi: 10.1136/bmj.q415
41. Devi S. First fatality from Alaskapox virus. Lancet Infect Dis. 2024;24(5):e282. doi: 10.1016/S1473-3099(24)00213-5
42. Douglass N. Borealpox (Alaskapox) virus: will there be more emerging zoonotic orthopoxviruses? Lancet Microbe. 2024:5(8):100883. doi: 10.1016/S2666-5247(24)00106-X
43. Bulletin State of Alaska Epidemiology. Bulletin 2 February 9,2024. Department of Health Heidi Hedberg, Commissioner Anne Ziak MD, Chef Medical Officer. 3601 C Street, Suite 540 Anchorage. Alaska 99503.
44. Sun Y, Nie W, Tian D, et al. Human monkeypox virus: epidemiologic review and research progress in diagnosis and treatment. J Clin Virol. 2024;171:105662. doi: 10.1016/j.jcv.2024.105882
45. Hraib M, Jouni S, Albitar MM. The outbreak of monkeypox 2022: an overview. Ann Med Surg (Lond). 2022;79:104069. doi: 10.1016/j.amsu.2022.104069
46. Branda F, Romano C, Ciccozzi M, et al. The emergence of Alaskapox: exploring an unprecedented viral threat and implications for public health. Infect Dis (Lond). 2024;56(6):496–8. doi: 10.1080/23744235.2024.2332463
47. Hellman Н. Great Feuds in Science: Ten of the Liveliest Disputes Eve. M.: Dialectics, 2007. – 320 р.
48. Hellem E. The great geographical argues. M.: Mir, 1985 – 216 р.
49. Diaz JH. The Disease Ecology, Epidemiology, Clinical Manifestations, Management, Prevention, and Control of Increasing Human Infections with Animal Orthopoxviruses. Wilderness Environ Med. 2021;32(4):528–36. doi: 10.1016/j.wem.2021.08.003
Review
For citations:
Stovba L.F., Chukhralia O.V., Petrov A.A., Melnikov S.A., Belozerov D.P., Filippova M.A., Kovalchuk V.A., Borisevich S.V. Оrthopoxviruses of New World: review of scientific literature. Epidemiology and Vaccinal Prevention. 2025;25(4):106-114. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-4-106-114