Preview

Epidemiology and Vaccinal Prevention

Advanced search

Viral pandemics: history, causes, consequences and control strategies

https://doi.org/10.31631/2073-3046-2025-24-6-92-105

Abstract

Relevance. Viral pandemics pose a global threat to public health and economics, placing an enormous burden on health systems in many countries. Historical examples such as the Antonine plague, the Spanish flu, and the SARS-CoV-2 pandemic, demonstrate their devastating impact on demographics and social stability. Modern factors, including urbanization, intensive population migration, close contacts with animals, and a high rate of RNA virus variability, increase the likelihood of new pandemics. Analyzing the history, causes, and consequences of pandemics, as well as developing control strategies, remain priorities for epidemiology, virology, and vaccine prevention.

Aim. To analyze accumulated data in the field of epidemiological and virological research on geography, phylogenetics, and geoepidemiology of RNA viruses that have caused the largest outbreaks of diseases over the past century; and to evaluate modern strategies for preventing and managing pandemics with a focus on epidemiological surveillance.

Material and methods. The authors have reviewed scientific literature, including historical sources, epidemiological data, and findings of molecular genetic research. The analysis of pandemics caused by influenza A (H1N1, H2N2, H3N2) viruses, coronaviruses (SARSCoV-1, MERS-CoV, SARS-CoV-2) and filoviruses (Ebola, Marburg) has been undertaken. The mechanisms of reassortment and mutation of RNA viruses, as well as the influence of anthropogenic and biotic factors on their spread have been studied. WHO data, Russian and international studies, including the domestic VGARus platform for aggregating data on the genomes of circulating SARS-CoV-2 viruses, have been explored.

Results and discussion. Influenza A viruses and coronaviruses have a high pandemic potential due to their variability, zoonotic origin, and ability to airborne transmission. Pandemics of the XX–XXI centuries, including the “Spanish flu” (1918-1919) and SARS-CoV2 (2019-2025), have demonstrated a significant impact on demographics, economics and medicine development. Filoviruses cause local outbreaks with high mortality, yet their epidemic potential is limited due to the lack of an airborne transmission mechanism and an endemic nature of their existence. Modern genomic surveillance technologies such as GISRS and VGARus, make it possible to monitor the development of viruses, allowing for regular updating of vaccine strains. The COVID-19 pandemic has highlighted the importance of digitalization, telemedicine, and operational regulatory measures with the use of available resources. However, the asymptomatic course and rapid evolution of viruses make it difficult to control the situation with outbreaks.

Conclusion. Viral pandemics remain an unavoidable threat, requiring a comprehensive approach to their prevention and control. Advances in vaccine prevention, genomic surveillance, and health digitalization demonstrate a potential to minimize the effects of future pandemics. International cooperation, timely regulatory measures, and further development of the national biosafety systems for rapid response to new pathogens are critically important.

About the Authors

N. V. Volkova
Russian Research Institute of Health
Russian Federation

Volkova Natalya V., Cand. Sci. (Biol.), Leading specialist of the project support department of the coordination center for research and development in the field of medical science

12, Vuchetich street, Moscow, 125206

+7 (495) 618-22-01 (ext.) 804

+7 (926) 363-53-84



I. G. Kotelnikova
Russian Research Institute of Health
Russian Federation

Irina G. Kotelnikova  – Cand. Sci. (Pharm.), Leading specialist of department of the coordination center for research and development in the field of medical science 

Moscow

+7 (495) 191-91-94 (ext.) 0323

+7 (495) 618-22-01 (ext. 814)

+7  (916)  164-42-11



E. V. Galitsyna
Russian Research Institute of Health
Russian Federation

Elena V. Galitsyna  – Cand. Sci. (Biol.), Leading specialist of the project support department of the coordination center for research and development in the field of medical science

Moscow

7 (495) 618-22-01 (ext. 716)



References

1. Istoria pandemii v faktakh. Special’nyi proekt Zelenogo portala. Available at: http://project.greenbelarus.info/pandemics-in-world. Accessed: 23 January 2025. (In Russ).

2. McNeil W. Epidemii I narody. M.: Universitet named after Dmitry Pojarsky. Russian Foundation for Assistance to Education and Science, 2021. – 448 с. (In Russ).

3. Oxford J.S., Sefton A., Jackson R., et al. World War I may have allowed the emergence of «Spanish» influenza. Lancet Infect. Dis. 2002; 2(2):111–4. doi: 10.1016/s1473-3099(02)00185-8.

4. Bolshakova O.V. Ispanka (1918–1920): nevyuchennye uroki. Trudy po rossievedeniyu. 2021. №. 8. – С. 82–105. Available at: https://cyberleninka.ru/article/n/ispanka1918-1920-nevyuchennye-uroki. Accessed: 18.12.2025. (In Russ).

5. Marshall N., Priyamvada L., Ende Z., et al. (2013). Influenza Virus Reassortment Occurs with High Frequency in the Absence of Segment Mismatch. PLoS Pathog 9(6): e1003421. doi:10.1371/journal.ppat.1003421.

6. Vijaykrishna D., Mukerji R., Smith G.J.D. (2015) RNA Virus Reassortment: An Evolutionary Mechanism for Host Jumps and Immune Evasion. PLoS Pathog 11(7): e1004902. doi:10.1371/journal.ppat.1004902.

7. Trebushkova I.E., Simchenko E.A. Geoistoricheskie aspekty isucheniya epidemii grippa. Aktual’nye problem gumaniternykh I estesstvennykh nauk. 2016. №7–2. Available at: https://cyberleninka.ru/article/n/geoistoricheskie-aspekty-izucheniya-epidemiy-grippa. Accessed: 04 February 2025. (In Russ).

8. Osterhaus А.Д.М.Е. Aktualnost’ chetyrekhvalentnykh gripposnykh vaccine. Mirovoi opyt. Epidemiologiya I vatzynoprophylaktika. 2018. № 17(4): 76–83. Available at: https://www.epidemvac.ru/jour. Accessed: 18 December 2025. (In Russ).

9. Osterhaus A.D.M.E., Rimmelzwaan G.F., Martina B.E., et al. Influenza B Virus in Seals. Science. 2000 May 12; 288(5468): 1051–3. doi: 10.1126/science.288.5468.1051.

10. Ran Z., Shen H., Lang Y., et al. Domestic pigs are susceptible to infection with influenza B viruses. Journal of Virology, 2015, 89(9): 4818–4826. doi: 10.1128/JVI.00059-15.

11. Bedford T., Riley S., Barr I.G., et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015;523(7559):217–220. doi:10.1038/nature14460.

12. Hui Li, Bin Cao. Pandemic and avian influenza A viruses in humans. Epidemiology, Virology. Clinical Characteristics and Treatment strategy. Clin. Chest. Med. 2017 March; 38(1):59–70. doi: 10.1016/j.ccm.2016.11.005.

13. vanRie L.D, Leijten L.M.E., van der Eerden M., et al. (2011). Highly Pathogenic Avian Influenza Virus H5N1 Infects Alveolar Macrophages without Virus Production or Excessive TNF-Alpha Induction. PLoS Pathog7(6):e1002099. doi:10.1371/journal.ppat.1002099.

14. Linster M, van Boheemen S., Miranda de Graaf, et al. Identification, Characterization and Natural Selection of Mutations Driving Airborne Transmission of A/H5N1 Virus. Cell. 2014 Apr 10; 157(2):329–339. doi: 10.1016/j.cell.2014.02.040.

15. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team; Dawood FS, Jain S, Finelli L, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009 Jun; 18; 360(25):2605-15. doi: 10.1056/NEJMoa0903810.

16. Fanning T., Selmons D.R., Reid A.H., et al. 1917 avian influence virus sequences suggest that 1918t pandemic virus not acquire its hemagglutinin directory from birds. Journal of Virology, 2002 August; 76(15):7860–862. doi: 10.1128/jvi.76.15.7860-7862.2002.

17. Kawaoka Y., Krauss S, Webster RG. Avian to human transmission of the PB1 gene of influenza virus in the 1957 and 1968 pandemics. J. of virology, 1989 Nov; 63(11):4603-8. doi: 10.1128/JVI.63.11.4603-4608.1989.

18. Matrosovich M.N., Gambaryan A.S., Teneberg S., et al. Avian Influenza A Viruses Differ from Human Viruses by Recognition of Sialyloligosaccharides and Gangliosides and by a Higher Conservation of the HA Receptor-Binding Site. Virology, 1997 Jun 23; 233(1): 224–234. doi:10.1006/viro.1997.8580.

19. Centers for Disease Control and Prevention (CDC). Swine influenza A (H1N1) infection in two children—Southern California, March-April 2009; MMWR Morb Mortal Wkly Rep. 2009; 58(15):400–402. Available at: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5815a5.htm. Accessed: 04 February 2025.

20. Sullivan SJ, Jacobson R.M., Dowdle W.R, et.al. 2009 H1N1 Influenza. Mayo Clin Proc. 2010 Jan; 85(1):64–76, doi:10.4065/mcp.2009.0588.

21. WHO. Pandemic (H1N1) 2009 - update 69. Available at: http://www.who.int/csr/disease/swineflu/en/index.html/ . Accessed: 04 February 2025.

22. L’vov D.K., Burtzeva E.I., Shelkanov M Yu., et al. Rasprostranenie novogo pandemicheskogo virusa grippa A(H1N1)v v Rossii. Voprosy virusologii. 2010 May-June; 55(3):4–9. Available at: https://www.elibrary.ru/item.asp?id=15179332. Accessed: 18 December 2025. (In Russ).

23. Krujkova I.S. Gripp A(H1N1)pdm 09: kliniko-virusologicheskaya kcarakteristika v epidemicheskie sezony 2009–2020 gg., strategii protivovirusnoi terapii. стратегии противовирусной терапии [dissertation], Moskva, 2024. Available at: https://www.rudn.ru/storage/media/science_dissertation/0693f02a-c875-43f7-8fd5-fc407bfd9bb8/uuCJkro96JjHL0LkTw04PfXK5CzMEPECyrx7xl9v.pdf. Accessed: 18 December 2025. (In Russ).

24. Cherry J.D., Krogstad P. SARS: the first pandemic of the 21st century. Pediatr Res. 2004 Jul;56(1):1–5. doi: 10.1203/01.PDR.0000129184.87042.FC.

25. Song H.D., Tu C.C., Zhang S.Y., et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA. 2005 Feb 15;102(7): 2430-5. doi: 10.1073/pnas.0409608102.

26. Peiris J.S., Yuen K.Y., Osterhaus A.D.M.E., et al. The severe acute respiratory syndrome. N. Engl. J. Med. 2003 Dec 18;349(25). doi: 10.1056/NEJMra032498.

27. Eremin V.F., Karpenko F.N. SARS-CoV, MERS-CoV, SARS-CoV-2: Etiologia, epidemiologia, sovremennye vzglyady. Soobshenie 1. Zdravookhranenie (Minsk). 2022; 9:5–14. ( Russ).

28. Chan J.F.W., Kenneth S.M., Kelvin K.W., et al. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J. Infect. 2012 Dec;65(6):477–489. doi: 10.1016/j.jinf.2012.10.002.

29. Azhar E.I., Hashem A.M., ElKafrawy S.A., et al. Detection of the Middle East respiratory syndrome coronavirus genome in an air sample originating from a camel barn owned by an infected patient. MBio. 2014 Jul 22;5(4):e01450–14. doi: 10.1128/mBio.01450-14.

30. Pollack M.P., Pringle C., Madoff L.C., et al. Novel coronavirus - Middle East. Int. J. Infect. Dis. 2013 Feb;17(2):e143-4. doi: 10.1016/j.ijid.2012.12.001.

31. Ather A., Patel B., Ruparel N., et al. Coronavirus Disease 19 (COVID-19): Implications for Clinical Dental Care. J. Endodont. 2020 May;46(5):584–595. doi: 10.1016/j.joen.2020.03.008.

32. Kiseleva I.V., Musaeva T.D. Ot coronavirusov k coronavirusam. Infektziya I immunitet. 2023; 13(5): 822–840. (In Russ).

33. Reis J., Frutos R., Buguet A., et al. Questioning the early events leading to the Covid-19 pandemic. Health risk analysis 2021; №4: 15. doi: 10.21668/health.risk/2021.4.01.eng.

34. Akimkin V.G., Semenenko T.A., Dubodelov D.V. et al. Teoriya samoregulyatzii parazitarnykh system i COVID-19. Vestnik RAMN. 2024; 79(1):33–41. (In Rus). doi: https://doi.org/10.15690/vramn11607.

35. WHO Factsheets. Coronavirus disease (COVID-19). Available at: https://www.who.int/news-room/fact-sheets/detail/coronavirus-disease-(covid-19).

36. Sizikova T.E., Lebedev V.N., Karulina N.V., et al. Nekotorye ekologicheskie kharakteristiki virusa Ebola v pryrodnykh ochagakh. J. microbiol., epidemiol. i immunobiol. 2018; 2:119–126. (In Russ).

37. Kobinger G.P., Leung A., Neufeld J., et al. Replication, pathogenicity, shedding, and transmission of Zaire ebolavirus in pigs. J. Infect Dis. 2011;204(2):200–208. doi: 10.1093/infdis/jir077.

38. Shelkanov M.Yu., Magassuba N.F., Dedkov V.G., et al. Prirodnyi reservuar filovirusov i tipy svyazannykh s nimi epidemicheskih vspyshek na territorii Afriki. Vestnik RAMN. 2017; 2:112–119. (In Russ). doi: 10.15690/vramn803.

39. Shelkanov M.Yu., Magassouba N.F., Boiro M.Y., et al. Prichiny razvitiya epidemii likhoradki Ebola v Zapadnoi Afrike. Lechashii vrach. 2014; 11:30–36. (In Russ).

40. US Centers for disease control and prevention. Available at: https://www.cdc.gov/ebola/outbreaks/index.html#cdc_listing_res-cases-and-outbreaks-of-ebola-disease-byyear. Accessed: 18 December 2025.

41. Mari Saez A., Weiss S., Nowak K., et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 2015;7(1):17–23. doi: 10.15252/emmm.201404792.

42. Ohimain E, Silas-Olu D. The 2013–2016 Ebola virus disease outbreak in West Africa. Current Opinion in Pharmacology. 2021 October; 60:360-365. doi: 10.1016/j.coph.2021.08.002.

43. Deen G.F., Broutet N., Xu W., et al. Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors – Final Report. New England Journal of Medicine. 2017 Oct 12;377(15):1428- 1437. doi: 10.1056/NEJMoa1511410.

44. Varkey J.B., Shantha J.G., Crozier I., et al. Persistence of Ebola Virus in Ocular Fluid during Convalescence. New England Journal of Medicine. 2015 June 18; 372(25):2423–7. doi: 10.1056/NEJMoa1500306.

45. Howlett P. Brown C., Helderman T., et al. Ebola Virus Disease Complicated by Late-Onset Encephalitis and Polyarthritis, Sierra Leone. Emerging Infectious Diseases. 2016 Jan;22(1):150-2. doi: 10.3201/eid2201.151212.

46. Doljikova I.V., Shwebinin D.N., Logunov D.Yu., et al. Virus Ebola (Filoviridae: Ebolavirus: Zaire ebolavirus): fatal’nye adaptatzionnye mutatzii. Voprosy virusologii. 2021; 66(1):7–16. (In Russ). doi: https://doi.org/10.36233/0507-4088-23.

47. Kirillov V.B., Kirillova C.L., Borisevitch S.V. Prognozirovanie posledstvii poyavleniya v Rossii zavoznykh sluchaev bolezni, vyzvannoi virusom Ebola. Problemy osobo opasnykh infektzii. 2015;3:24–26. Available at: https://cyberleninka.ru/article/n/prognozirovanie-posledstviy-poyavleniya-v-rossii-zavoznyh-sluchaev-bolezni-vyzvannoy-virusomebola. Accessed: 18 December 2025. (In Russ).

48. Ristanović E.S., Kokoškov N.S., Crozier I., et al. A forgotten episode of Marburg virus disease: Belgrade, Yugoslavia, 1967. Microbiol. Mol. Biol. Rev. 2020; 84(2): e00095–19. doi: 10.1128/MMBR.00095-19.

49. Bauer M.P., Timen A., Vossen A.C.T.M., et al. Marburg haemorrhagic fever in returning travellers: Аn overview aimed at clinicians. Clin. Microbiol. Infect. 2019; 21S: e28–e31. doi: 10.1111/1469-0691.12673.

50. Brauburger К., Hume A.J., Muhlberger E., et al. Forty-five years of Marburg virus research. Viruses. 2012 Oct 1;4(10):1878–1927. doi: 10.3390/v4101878.

51. Kortepeter M.G., Dierberg K.D., Shenoy E.S., et al. Medical Countermeasures Working Group of the National Ebola Training and Education Center’s (NETEC) Special Pathogens Research Network (SPRN). Marburg virus disease: A summary for clinicians. Int. J. Infect. Dis. 2020 Oct; 99:233–242. doi: 10.1016/j.ijid.2020.07.042.

52. World Health Organization strategy Prioritizing diseases for research and development in emergency contexts. 2019. Available at: https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts. Accessed: 18 December 2025.

53. Lu Lu, Zhang F., Brierley L., et al. Temporal Dynamics, Discovery and Emergence of Human-Transmissible RNA Viruses. Mol. Biol. Evol., 2024 Jan 3;41(1):msad272. doi: 10.1093/molbev/msad272.

54. World Health Organization strategy (2022-2026) for the National Action Plan for Health Security. Available at: https://www.who.int/publications/i/item/978924006154/ Accessed: 18 December 2025.

55. The WHO has announced the creation of a global network to detect and prevent infectious threats. Available at: https://www.who.int/ru/news/item/20-05-2023-wholaunches-global-network-to--detect-and-prevent-infectious-disease-threats. Accessed: 18 December 2025.

56. Akimkin V.G., Khafizov K.F., Dubodelov D.V., et al. Molecularno-geneticheskii monitoring i tehnologii tzifrovoi transformatzii v sovremennoi epidemiologii. Vestnik RAMN. 2023;78(4):363–369. Available at: https://cyberleninka.ru/article/n/molekulyarno-geneticheskiy-monitoring-i-tehnologii-tsifrovoy-transformatsii-v-sovremennoy-epidemiologii. (In Russ).

57. Murashko V.F. Pervaya pandemiya tzifrovoi epokhi: uroki dlya natzionalnogo zdravookhraneniya. Natzionalnoe zdravookhranenie. 2020;1(1):4–8. (In Russ).

58. Resolution of the Government of the Russian Federation dated 03.04.2020 №441.

59. Resolution of the Government of the Russian Federation dated 03.04.2020 № 430.

60. Roscongress site: Triada budushei bezopasnosti: genomnyi epidnadzor, bolshie dannye I mobil’nye technologii. Available at: https://roscongress.org/sessions/fbt-2024-triada-budushchey-biobezopasnosti-genomnyy-epidnadzor-bolshie-dannye-i-mobilnye-tekhnologii/discussion/?utm_referrer=https%3A%2F%2Fyandex.ru%2F. Accessed: 18 December 2025.(In Russ).

61. Johansson M.A., Quandelacy T.M., Kada S., et al. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw Open 2021; 4:e2035057.


Review

For citations:


Volkova N.V., Kotelnikova I.G., Galitsyna E.V. Viral pandemics: history, causes, consequences and control strategies. Epidemiology and Vaccinal Prevention. 2025;24(6):92-105. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-6-92-105

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)