Preview

Epidemiology and Vaccinal Prevention

Advanced search

The Search for a Universal Influenza Vaccine: Possibilities and Limitations

https://doi.org/10.31631/2073-3046-2019-18-5-70-84

Abstract

Relevance.Upon the unquestionable utility of regular season vaccination influenza vaccine effectiveness varies depending on how vaccinal strains to be in accord with seasonal circulating influenza strains, i.e. the influenza vaccines are virtually strain-spesific and not able to elicit broad, protective immune responses. Aim is widening the scope of bioinformatics applications to show the possibility to construct  H1 and H3 hemagglutinin structures that contain long identical invariant (conservative) sequences from various strains and can accordingly be used as a universal influenza vaccine at the level of strain subtypes for the future seasons and also to discuss possibilities and limitations in the search for the universal influenza vaccine. Materials and methods.  For the computer analysis, the database of the hemagglutinin (HA) primary structures of the H1N1 and H3N2 strains isolated in the influenza epidemiological season 2009/2010–2018/2019 were used from the Internet. For every epidemical season dominant and invariant H1 sequences (presenting the generalized HA images of circulating strains) are constructed and used for the comparison of seasons. The dominant sequence of the seasonal dominant sequences and the invariant sequences of the seasonal dominant sequences are used as the HA characteristics for ten year period. Results.  The seasonal dominant HA sequences of the last ten year period contain a few changes, i.e. their structures are robust and each structure contains practically all identical conservative sequences of the HA of the following seasons. During the last ten years the bird and swine HA H1 and H3, in contrast to human HA H1 and H3, have requiredsignificant changes. Conclusion. The vacccines using the H1 and H3 dominant sequences for preceding epidemical seasons could be effective against the various strain subtypes in the future seasons.

About the Author

E. P. Kharchenko
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Russian Federation

EugeneP. Kharchenko – Dr. Sci. (Biol.), leader researcher of I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy Sciences.

194223, St. Petersburg, Toreza pr.44.

+7 (904) 338-22-80.



References

1. Erbelding EJ., Post DJ. Stemmy EJ. et al. Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. // Journal of Infectious Diseases 2018. Vol. 218. P. 347–354. doi: 10.1093/infdis/jiy103.

2. Zost SJ, Wu NC, Hensley SE. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis. 2019 Apr 8; 219 (Supplement_1). doi: 10.1093/infdis/jiy696.10.1093/infdis/jiy696.

3. https://www.who.int/influenza/global_influenza_strategy_2019_2030/en/.

4. Cohen J. Universal flu vaccine is ‘an alchemist’s dream’. // Science. 2018. Vol. 362.N 6419. P. 1094. doi: 10.1126/science.362.6419.1094.

5. Kharchenko EP. Optimization of the Predicting of the Influenza Vaccine Strains. Epidemiology and Vaccinal Prevention. 2019;18 (1): 4–17. (In Russ.). doi: 10.31631/2073-3046-2019-18-1-4-17.

6. Kharchenko EP. Three Levels of the Predicting of the Influenza Vaccine Strains. Epidemiology and Vaccinal Prevention. 2019; 18 (2): 4–17. (In Russ.). doi: 10.31631/2073-3046-2019-18-2-4–17.

7. Gilesa BM., Ross TM. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly reactive antibodies in mice and ferrets. // Vaccine. Vol. 29, P. 3043–3054. doi:10.1016/j.vaccine.2011.01.100.

8. Sautto GA., Kirchenbaum GA., Ross TM.. Towards a universal influenza vaccine: different approaches for one goal. // Virology Journal . 2018 . Vol. 15, P. 17-31. DOI 10.1186/s12985-017-0918-y.

9. Isakova-Sivak I, Rudenko L. Safety, immunogenicity and infectivity of new live attenuated influenza vaccines. Expert Rev Vaccines. 2015; Vol. 14. N 10. P: 1313–1329. doi: 10.1586/14760584.2015.1075883.

10. Rudraraju R ., Mordant F ., Subbarao K. How live attenuated vaccines can inform the development of broadly cross-protective influenza vaccines. // J Infect Dis. 2019 . Vol. 219(Supplement_1): S81–S87. doi: 10.1093/infdis/jiy703.

11. Blanco-Lobo P., Nogales A., Rodríguez L. et al. Novel approaches for the development of live attenuated influenza vaccines. // Viruses. 2019 . Vol. 11,.N 2. pii: E190. doi: 10.3390/v11020190.

12. Martínez MA, Jordan-Paiz A, Franco S. et al. Synonymous virus genome recoding as a tool to impact viral fitness. // Trends Microbiol. 2016. Vol. 24 .N 2. P. 134-147. doi: 10.1016/j.tim.2015.11.002.

13. Kwong PD ., Mascola JR. HIV-1 Vaccines based on antibody identification, b cell ontogeny, and epitope structure. // Immunity. 2018. Vol. 48, N 5. P. 855-871. doi: 10.1016/j.immuni.2018.04.029.

14. Burton DR. Advancing an HIV vaccine advancing vaccinology. // Nat Rev Immunol. 2019 . Vol. 19. N 2. P. 77–78. doi: 10.1038/s41577-018-0103-6.

15. Sok D, Burton DR. Recent progress in broadly neutralizing antibodies to HIV. // Nat Immunol. 2018. Vol. 19, N 11. P. 1179–1188. doi: 10.1038/s41590-018-0235-7.

16. Andrabi R, Bhiman JN, Burton DR. Strategies for a multi-stage neutralizing antibody-based HIV vaccine. // Curr Opin Immunol. 2018. Vol. 53. . P. 143–151. doi: 10.1016/j.coi.2018.04.025.

17. Graham BS., Gilman M.S.A., McLellan JS. Structure-based vaccine. // Annu. Rev. Med. 2019. Vol. 70, P. 91–104. doi: 10.1146/annurev-med-121217-094234.

18. Nabel GJ, Fauci AS. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. // Nat Med. 2010 . Vol. 16, N. 12. P. 1389–1391. doi: 10.1038/nm1210-1389.

19. Benmira S.,Bhciilachaiyu V.. Schmid M. L. An effective HIV vaccine: A combination o f humoral and cellular immunity? // Curr. HIV Res. 2010. Vol. 8, P. 44 1–449.

20. Харченко Е. П. Иммунная привилегия: патологический аспект // Иммунология . 2009.Т. 30 . N. 4. С. 249–255.

21. Thom R. Catastrophe theory: its present state and future perspectives. Warwick. Springer Verlag. 1974. 75 p.

22. Johnson W.E. Endogenous retroviruses in the genomics era. // Annu. Rev. Virol. 2015. Vol. 2, P. 135–159. doi: 10.1146/annurev-virology-100114-054945.

23. Walkup L ‘Junk’ DNA: evolutionary discards or God’s tools? //Journal of creation (Technical Journal) 2000. Vol. 14, P.18–30.

24. Krammer F, Palese P. Universal influenza virus vaccines that target the conserved hemagglutinin stalk and conserved sites in the head domain. // J. Infect. Dis. 2019. Vol. 219 (Supplement_1): S62–S67. doi: 10.1093/infdis/jiy711.

25. Tan H. -X., Jegaskanda S., Juno JA et al. Subdominance and poor intrinsic immunogenicity limit humoral immunity targeting influenza HA-stem. // J. Clin. Invest. 2018. Vol. 129, N 2. P. 850–862. doi: 10.1172/JCI123366.

26. Crick FH. Thinking about the brain. // Sci. Am. 1979. Vol. 241, N 3. P. 181–188.

27. June CH., Warshauer JT., Bluestone JA. Is autoimmunity the Achilles’ heel of cancer immunotherapy? // Nature Medicine 2017. Vol. 23, N. 5. P. 540–547 .doi:10.1038/nm.4321.

28. Chang LS., Barroso-Sousa R., Tolaney SM. et al. Endocrine toxicity of cancer immunotherapy targeting immune checkpoints. // Endocr Rev. 2019. Vol. 40, N 1. P. 17–65. doi: 10.1210/er.2018-00006.

29. Chai N, Swem LR, Reichelt M, et al. Two escape mechanisms of influenza a virus to a broadly neutralizing stalk-binding antibody. // PLoS Pathog. 2016 . Vol. 12, N 6. P. e1005702. doi: 10.1371/journal.ppat.1005702.

30. Prachanronarong KL., Canale AS., Liu P. et al. Mutations in influenza A virus neuraminidase and hemagglutinin confer resistance against a broadly neutralizing hemagglutinin stem antibody. // J. Virol. 2019. Vol. 93,N 2. P. e01639–18. doi: 10.1128/JVI.01639-18.

31. Zost S.J., Wu N.C., Hensley S.E. et al. Immunodominance and antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine immunogens. // J. Infect. Dis. 2019. Vol. 219 (Supplement_1): S38–S45. doi: 10.1093/infdis/jiy696.

32. Bajic G., van der Poel C.E., Kuraoka M. et al. Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies. // Sci Rep. 2019. Vol. 9, N 1. P. 3492. doi: 10.1038/s41598-019-40175-8.


Review

For citations:


Kharchenko E.P. The Search for a Universal Influenza Vaccine: Possibilities and Limitations. Epidemiology and Vaccinal Prevention. 2019;18(5):70-84. (In Russ.) https://doi.org/10.31631/2073-3046-2019-18-5-70-84

Views: 948


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)