Vaccines against Covid-19: Comparison, Limitations, the Decrease of Pandemic and the Perspective of Viral Respiratory
https://doi.org/10.31631/2073-3046-2021-20-1-4-19
Abstract
Relevance. Vaccines are regarded as an effective means for control of the Covid-19 pandemic spreading and their search, analysis, and comparison of their features are important for elucidating the most safe and effective one.
Aim. At the end of 2020 two types of vaccines (viral based vaccines and mRNA vaccines) have been licensed to vaccinate. The aim is to compare their features for objective substantiation of their application.
Conclusions. As both vaccine types have high effectiveness in inducing antibodies to SARS-Cov-2 (in more 90% recipients) the utility of each vaccine type in blocking the Covid-19 pandemic spreading is beyond doubt. In both vaccine types eventually S protein is the antigen source, and they have limitations for vaccination. In comparison with the vector vaccines mRNA vaccines may induce serious complications, have the least potential to induce trained immunity and can be included into the recipient’s genome. The low frequency of influenza cases in the current epidemic season serves as an of interference between SARS-Cov-2 and influenza viruses. In epidemic seasons after the Covid-19 pandemic coronaviruses may dominate amongst viruses inducing acute respiratory viruses diseases. It is likely that the decline of the Covid-19 case count (in December-January) in Russia is determined by the heterologous collective immunity formed earlier.
About the Author
E. P. KharchenkoRussian Federation
Eugene P. Kharchenko – Dr. Sci. (Biol.), leader researcher
194223, Russia, St. Petersburg, Toreza pr., 44.
References
1. Song Z, Xu Y, Bao L, Zhang L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1). doi: 10.3390/v11010059.
2. Kharchenko EP. The Coronavirus SARS-Cov-2: the Characteristics of Structural Proteins, Contagiousness, and Possible Immune Collisions. Epidemiology and Vaccinal Prevention. 2020;19(2):13–30 (In Russ.). https://doi:10.31631/2073-3046-2020-19-2-13-30.
3. Kiselev О.I. Pregnancy, immunosuppression, influenza and the placental expression of endogenous retroviruses. 2014. St. Petesburg. Publisher «Rostok». 316 p. (In Russ.).
4. Cantuti-Castelvetri L., Ojha R., Pedro L., Djannatian M., et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. doi: 10.1101/2020.06.07.137802.
5. Kharchenko E. P. The complexity of coagulopathy pathogenesis in COVID-19. Tromboz, gemostaz i reologiya. 2020;(4):41–51 (In Russ.). doi:10.25555/THR.2020.4.0944.
6. Korber B., Fischer W. M., Gnanakaran S.. et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARSCoV-2. bioRxiv. May 05, 2020. doi: 10.1101/2020.04.29.069054. [Preprint].
7. European Centre for Disease Prevention and Control. Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom – 20 December 2020. ECDC: Stockholm; 2020.
8. Tegally H ., Wilkinson E ., Giovanetti M ., Iranzadeh A., et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, preprint, doi: 10.1101/2020.12.21.20248640.
9. Andreano E., Piccini G., Licastro D., Casalino L., et al. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv/preprint, doi: 10.1101/2020.12.28.424451.
10. Starr T.N., Greaney A.J., Addetia A., Hannon W.W., et al. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. bioRxiv. Preprint, doi: 10.1101/2020.11.30.405472.
11. Cohen A.A., Gnanapragasam P.N.P., Lee Yu E., et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. bioRxiv preprint doi: 10.1101/2020.11.17.387092.
12. Kharchenko EP. Vaccines against Covid-19: the Comparative Estimates of Risks in Adenovirus Vectors. Epidemiology and Vaccinal Prevention. 2020;19(5):4–17 (In Russ.). https://doi: 10.31631/2073-3046-2020-19-5-4-17.
13. Cohen J. Universal flu vaccine is ‘an alchemist’s dream’. //Science. 2018. 362( 6419) : 1094. doi: 10.1126/science.362.6419.1094.
14. Nabel GJ, Fauci AS. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat Med. 2010;16(12):1389–1391. doi: 10.1038/nm1210-1389.
15. Netea M.G., and Jos W.M. van der Meer1.Trained Immunity: An Ancient Way of Remembering. Cell Host & Microbe. 2017; doi. 10.1016/j.chom.2017.02.003.
16. Netea M.G., Domínguez-Andrés J., Barreiro L.B., Chavakis T. Defining trained immunity and its role in health and disease. Nature Reviews Immunology. 2020;20:375 –388. doi 10.1038/s41577-020-0285-6.
17. Gil A., Kenney L.L., Mishra R., et al, Vaccination and heterologous immunity: educating the immune system. Trans. R. Soc. Trop. Med. Hyg., 2015;109(1):62–69. doi: 10.1093/trstmh/tru198.
18. Selin LK, Wlodarczyk MF, Kraft AR, et al. Heterologous immunity: immunopathology, autoimmunity and protection during viral infections. Autoimmunity. 2011;44:328– 347. doi:10.3109/08916934.2011.523277.
19. Kharchenko E.P. Immune Epitope continuum of the protein relationships,polyand autoreactivity of antibodies. Meditsinskaya Immunologiya = Medical Immunology, 2015, vol. 17, no. 4, pp. 335–346 (In Russ.). doi: 10.15789/1563-0625-2015-4-335-346.
20. Kharchenko EP. The Coronavirus SARS-Cov-2: the Complexity of Infection Pathogenesis, the Search of Vaccines and Possible Future Pandemics. Epidemiology and Vaccinal Prevention. 2020;19(3):4–20 (In Russ.). https://doi: 10.31631/2073-3046-2020-19-3-4-20.
21. Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020; doi: 10.1038/s41586-020-2798-3.
22. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines – a new era in vaccinology. Nature Reviews | Drug Discovery Volume 2018;17:261–279. doi:10.1038/nrd.2017.243.
23. Stedman K. M. Deep Recombination: RNA and ssDNA Virus Genes in DNA Virus and Host Genomes. Annu. Rev. Virol. 2015;2:203–217. doi: 10.1146/annurevvirology-100114-055127.
24. Johnson W.E. Endogenous Retroviruses in the Genomics Era. Annu. Rev. Virol. 2015;2:135–159. doi: 10.1146/annurev-virology-100114-054945.
25. Jachiet P.A., Colson P., Lopez P., Bapteste E. Extensive gene remodeling in the viral world: new evidence for nongradual evolution in the mobilome network. Genome Biol. Evol. 2014;6(9):2195–2205. doi:10.1093/gbe/evu168.
26. Georgiades K., Raoult D. How microbiology helps define the rhizome of life. Front Cell Infect Microbiol. 2012. doi: 10.3389/fcimb. 2012.00060.
27. Katzourakis A., Gifford R.J. Endogenous Viral Elements in Animal Genomes. PLoS Genet. 2010;6(11):e1001191. doi:10.1371/journal.pgen.1001191.
28. Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: multiple integrations of ancient Bornavirus and Ebolavirus/Marburgvirus sequences in vertebrate genomes. PLOS Pathog. 2010;6(7):e1001030. doi:10.1371/journal.ppat.1001030.
29. Suntsova M., Garazha A., Ivanova A., et al. Molecular functions of human endogenous retroviruses in health and disease. Cell. Mol. Life Sci. 2015;72:3653–3675. doi: 10.1007/s00018-015-1947-6.
30. Zhang L., Richards A., Khalil A., Wogram E., etal. SARS-CoV-2 RNAreverse-transcribedandintegratedintothehumangenome. bioRxiv. 2020. doi:10.1101/2020.12.12.422516.
31. Zhdanov VM. Integration of viral genomes. Nature 1975;256:471–473 .
32. Klenerman P, Hengartner H, Zinkernagel RM. A non-retroviral RNA virus persists in DNA form. Nature. 1997;390:298–301.
33. Khatchikian D, Orlich M, Rott R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature. 1989;340(6229):156–157. doi: 10.1038/340156a0.
34. Romanova LI, Blinov VM, Tolskaya EA, et al. The primary structure of crossover regions of intertypic poliovirus recombinants: a model of recombination between RNA genomes. Virology. 1986;155(1):202–213.
35. Kharchenko EP. The Occurrence of Genetic Recombination between Viruses and Human – its Possible Influence on Vaccination. Epidemiology and Vaccinal Prevention. 2019;18(5): 4–14 (In Russ.). https://doi: 10.31631/2073-3046-2019-18-6-4-14.
36. Alberer M, Gnad-Vogt U, von Sonnenburg F, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first in human phase 1 clinical trial. Lancet 2017 Sep 25;390(10101):1511–1520. doi: 10.1016/S0140-6736(17)31665-3.
37. Theofilopoulos AN, Kono DH, Baccala R. The multiple pathways to autoimmunity. Nature Immunology. 2017;18(7):716–724. doi:10.1038/ni.3731.
38. Fischer, S., et al. Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood 2007;110:2457–2465.
39. Kannemeier, C., et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc. Natl Acad. Sci. USA 2007;104;6388–6393.
40. Dan Ge, Qiqi Du, Bingqing Ran, et al. The neurotoxicity induced by engineered nanomaterials. International Journal of Nanomedicine 2019;14:4167–4186. doi: 10.2147/IJN.S203352.
41. Mahajan S., Kode V., Bhojak K., Magdalene C.M., et al. Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals. bioRxiv 2020. Preprint. doi:10.1101/2020.11.03.367375.
42. Kharchenko EP. The Search for a Universal Influenza Vaccine: Possibilities and Limitations. Epidemiology and Vaccinal Prevention. 2019;18(5):70–84 (In Russ.). https://doi:10.31631/2073-3046-2019-18-5-70-84.
43. Servick K . Coronavirus creates a flu season guessing game. Science 2020; 369 (6506) : 890-891. doi: 10.1126/science.369.6506.890 .
44. Kharchenko E.P. Occurrence of small homologous and complementary fragments in human virus genomes and their possible role. Russian Journal of Infection and Immunity = Infektsiya i immunitet, 2017, vol. 7, no. 4, pp. 393–404 (In Russ.). doi: 10.15789/2220-7619-2017-4-393-404.
45. Sánchez-Ramón S., Conejero L ., Netea M . G. , Sancho D .et al. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front. Immunol. 2018;9:2936. doi: 10.3389/fimmu.2018.02936.
46. Hajishengallis G ., Li X ., Mitroulis I ., Chavakis T .Trained innate immunity and its implications for mucosal immunity and inflammation. Adv Exp Med Biol. 2019;1197:11–26. doi:10.1007/978-3-030-28524-12.
Review
For citations:
Kharchenko E.P. Vaccines against Covid-19: Comparison, Limitations, the Decrease of Pandemic and the Perspective of Viral Respiratory. Epidemiology and Vaccinal Prevention. 2021;20(1):4-19. (In Russ.) https://doi.org/10.31631/2073-3046-2021-20-1-4-19