Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Различные технологии получения пневмококковых иммуногенов:определение новых подходов к их разработке

https://doi.org/10.31631/2073-3046-2021-20-1-76-91

Полный текст:

Аннотация

Актуальность. Применение во всем мире пневмококковых вакцин, в частности конъюгированных (PCV), привело к значительному снижению частоты инвазивных пневмококковых заболеваний у вакцинированных детей и у непривитых людей всех возрастов как при носительстве, так и при увеличении резистентности пневмококка к антибиотикам. Однако «невакцинные» серотипы и бескапсульные (нетипируемые) штаммы стали основными причинами пневмококковых заболеваний. Это требует новых подходов при разработке вакцин, способных привести к серотипнезависимой защите, особенно детей, пожилых и иммунокомпрометированных людей. Пневмококковая вакцина должна защищать от широкого спектра серотипов, индуцировать мукозальный и системный иммунитет, снижать первичную назальную колонизацию и инвазивные формы.

Цель. Обзор посвящен анализу экспериментальных разработок инновационных вакцин на основе протективных белковых антигенов (PPV) с капсульными полисахаридами, адъювантами, системой доставки антигена, а также инактивированных цельноклеточных (WCV) и живых аттенуированных. Особое внимание уделено методам мукозальной иммунизации, учитывая тропизм пневмококка к слизистым верхних и нижних дыхательных путей.

Заключение. На данном этапе наиболее перспективными представляются препараты на основе бактериальных лизатов WCV) и протективных белковых антигенов (PspA, dPly), а также этих антигенов в сочетании с адъювантами и, возможно, с некоторыми этиологически наиболее значимыми капсульными полисахаридами.

Об авторах

И. М. Грубер
ФГБНУ НИИ вакцин и сывороток им. И. И. Мечникова
Россия

Ирина Мироновна Грубер – доктор медицинских наук, профессор, заведующая лабораторией экспериментальной микробиологии

105064, Москва, Малый Казённый переулок, 5А.



О. М. Кукина
ФГБНУ НИИ вакцин и сывороток им. И. И. Мечникова
Россия

Ольга Максимовна Кукина – младший научный сотрудник лаборатории экспериментальной микробиологии

105064, Москва, Малый Казённый переулок, 5А.



Н. Б. Егорова
ФГБНУ НИИ вакцин и сывороток им. И. И. Мечникова
Россия

Надежда Борисовна Егорова – доктор медицинских наук, профессор, заслуженный деятель науки РФ, ведущий научный сотрудник лаборатории терапевтических вакцин

105064, Москва, Малый Казённый переулок, 5А.



О. В. Жигунова
ФГБНУ НИИ вакцин и сывороток им. И. И. Мечникова
Россия

Ольга Валерьевна Жигунова – младший научный сотрудник лаборатории экспериментальной микробиологии

105064, Москва, Малый Казённый переулок, 5А.



Список литературы

1. Семенова И. Б., Михайлова Н. А. Серотипнезависимые вакцины против пневмококковой инфекции. //Журнал микробиологии, эпидемиологии и иммунобиологии. 2016. №4. С. 76–85.

2. Петухова Е. С., Воробьев Д. С., Семенова И. Б. Роль белков Streptococcus pneumoniae в разработке серотипнезависимых пневмококковых вакцин. //Журнал микробиологии, эпидемиологии и иммунобиологии. 2018. Т.1, №3. С. 74–80.

3. Daniels С., Rogers D., Shelton C. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens. //The Journal of Pediatric Pharmacology and Therapeutics. 2016. Vol. 21, N1. P. 27–35.

4. Moffitt K., Malley R. Rationale and prospects for novel pneumococcal vaccines. //Human Vaccines & Immunotherapeutics. 2016. Vol. 12, N2. P. 383–392.

5. Pichichero M. Pneumococcal whole-cell and protein–based vaccines: Changing the paradigm. //Expert Review of Vaccines. 2017. Vol.16, N12. Р. 1181–1190.

6. Pichichero M., Khan N., Xu Q. Next generation protein based Streptococcus pneumoniae vaccines. //Human Vaccines & Immunotherapeutics. 2016. Vol. 12, N1. P. 194–205.

7. Principi N., Esposito S. Development of pneumococcal vaccines over the last 10 years. //Expert Opinion on Biological Therapy. 2018. Vol. 18, N1. P. 7–17.

8. Masomian M., Ahmad Z., Ti Gew L., et al. Development of Next Generation Streptococcus pneumoniae Vaccines Conferring Broad Protection. //Vaccines. 2020. Vol. 8, N1. P. 132.

9. Wagner-Muniz D.A., Haughney S.L., Kelly S.M., et al. Room Temperature Stable PspA-Based Nanovaccine Induces Protective Immunity. //Frontiers in Immunology. 2018. Vol. 9. P. 325.

10. Shaper M., Hollingshead S.K., Benjamin W.H., et al. PspA Protects Streptococcus pneumoniae from Killing by Apolactoferrin, and Antibody to PspA Enhances Killing of Pneumococci by Apolactoferrin. //Infection and Immunity. 2004. Vol. 72, N9. P. 5031–5040.

11. Daniels C.C., Coan P., King J., et al. The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. //Infection and Immunity. 2010. Vol. 78, N5. P. 2163–2172.

12. Hollingshead S.E., Becker R., Briles D.E. Diversity of PspA: Mosaic genes and evidence for past recombination in Streptococcus pneumoniae. //Infection and Immunity. 2000. Vol 68, N10. P. 5889–5900.

13. A.T., Ferreira D.M., et al. Recognition of pneumococcal isolates by antisera raised against PspA fragments from different clades. //Journal of Medical Microbiology. 2008. Vol. 57, N3. P.273–278.

14. van Roosmalen M.L., Kanninga R., El Khattabi M., et al. Mucosal vaccine delivery of antigens tightly bound to an adjuvant particle made from food-grade bacteria. //Methods. 2006. Vol. 38, N2. P.144–149.

15. Nabors G.S., Braun P.A., Herrmann D.J., et al. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. //Vaccine. 2000. Vol. 18, N17. P.1743–1754.

16. Briles D.E., Hollingshead S.K., King J., et al. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. //The Journal of Infectious Diseases. 2000. Vol. 182, N6. P. 1694–1701.

17. Darrieux M., Miyaji E.N., Ferreira D.M., et al. Fusion proteins containing family 1 and family 2 PspA fragments elicit protection against Streptococcus pneumoniae that correlates with antibody-mediated enhancement of complement deposition. //Infection and Immunity. 2007. Vol. 75, N12. P. 5930–5938.

18. Kawaguchiya M., Urushibara N., Aung M.S., et al. Genetic diversity of pneumococcal surface protein A (PspA) in paediatric isolates of non-conjugate vaccine serotypes in Japen. //Journal of Medical Microboilogy. 2018. Vol. 67, N8. P.1130–1138.

19. Moreno A.T., Oliveira M.L.S., Ferreira D.M., et al. Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. //Clinical and Vaccine Immunology. 2010. Vol. 17, N3. P. 439–446.

20. Akbari E., Negahdari B., Faraji F., et al. Protective responses of an engineered PspA recombinant antigen against Streptococcus pneumoniae. //Biotechnology Reports. 2019. Vol. 24. P. e00385.

21. da Silva M.A., Converso T.R., Goncalves V.M., et al. Conjugation of PspA4Pro with capsular Streptococcus pneumoniae polysaccharide serotype 14 does not reduce the induction of cross-reactive antibodies. //Clinical and Vaccine Immunology. 2017 Vol. 24, N8. P.e00118–17.

22. Feldman C., Anderson R. Review: current and new generation pneumococcal vaccines//Journal of Infection. 2014. Vol. 69, N4. P. 309–325.

23. Ren D., Almudevar A.L., Pichichero M.E. Synchrony in serum antibody response to conserved proteins of Streptococcus pneumoniae in young children//Human Vaccines & Immunotherapeutics. 2015. Vol. 11, N2. P. 489–497.

24. Pichichero M.E., Kaur R., Casey J.R., et al. Antibody response to Streptococcus pneumoniae proteins PhtD, LytB, PcpA, PhtE and Ply after nasopharyngeal colonization and acute otitis media in children//Human Vaccines & Immunotherapeutics. 2012. Vol. 8, N6. P. 799–805.

25. Mann B., Thornton J., Heath R., et al. Broadly protective protein-based pneumococcal vaccine composed of pneumolysin toxoid-CbpA peptide recombinant fusion protein//The Journal of Infectious Diseases. 2014. Vol. 209, N7. P. 1116–1125.

26. Converso T.R., Goulart C., Darrieux M., et al. A protein chimera including PspA in fusion with PhtD is protective against invasive pneumococcal infection and reduces nasopharyngeal colonization in mice//Vaccine. 2017. Vol. 35, N37. P. 5140–5147.

27. Chen A., Mann B., Gao G., et al. Multivalent pneumococcal protein vaccines comprising pneumolysoid with epitopes/fragments of CbpA and/or PspA elicit strong and broad protection. //Clinical and Vaccine Immunology. 2015. Vol. 22, N10. P. 1079–1089.

28. van Westen E., Poelen M.C.M., van den Dobbelsteen G.P.J.M., et al. Immunodominance in T cell responses elicited against different domains of detoxifiedpneumolysin PlyD1//PLOS ONE. 2018. Vol. 13, N3. P. e0193650.

29. Zysk G., Bongaerts R.J.M., ten Thoren E., et al. Detection of 23 immunogenic pneumococcal proteins using convalescent-phase serum. //Infection and Immunity. 2000. Vol. 68, N6. P. 3740–3743.

30. Bethe G., Nau R., Wellmer A., et al. The cell wall-associated serine protease PrtA: a highly conserved virulence factor of Streptococcus pneumoniae. //FEMS Microbiology Letters. 2001. Vol. 205, N1. P. 99–104.

31. de Stoppelaar S.F., Bootsma H.J., Zomer A., et al. Streptococcus pneumoniae serine protease HtrA, but not SFP or PrtA, is a major virulence factor in pneumonia. //PLOS ONE. 2013. Vol. 8, N11. P. e80062.33.

32. Chen X., Li B., Yu J., et al. Comparison of four adjuvants revealed the strongest protection against lethal pneumococcal challenge following immunization with PsaA-PspA fusion protein and AS02 as adjuvant. //Medical Microbiology and Immunology. 2019. Vol. 208, N2. P. 215–226.

33. Khan S., Bijker M.S., Weterings J.J., et al. Distinct uptake mechanisms but similar intracellular processing of two different toll-like receptor ligand-peptide conjugates in dendritic cells. //Journal of Biological Chemistry. 2007. Vol. 282, N29. P. 21145–21159.

34. Moffitt K., Skoberne M., Howard A., et al. Toll-like receptor 2-dependent protection against pneumococcal carriage by immunization with lipidated pneumococcal proteins//Infection and Immunity. 2014. Vol. 82, N5. P. 2079–2086.

35. Lee S., Nguyen M.T. Recent Advances of Vaccine Adjuvants for Infectious Diseases//Immune Network. 2015. Vol. 15, N2. P. 51–57.

36. Moyer T.J., Zmolek A.C., Irvine D.J. Beyond antigens and adjuvants: formulating future vaccines. //Journal of Clinical Investigation. 2016. Vol.126, N3. P. 799–808.

37. Li P, Asokanathan C, Liu F, et al. PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model. //International Journal of Pharmaceutics. 2016. Vol. 513, N1–2. P. 183–190.

38. Wegmann F., Gartlan K.H., Harandi A.M., et al. Polyethyleneimine is a potent mucosal adjuvant for viral glycoprotein antigens. //Nature Biotechnology. 2012. Vol. 30, N9. P. 883–888.

39. Jing Z.-W., Jia Y.-Y., Wan N., et al. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. //Biomaterials. 2016. Vol. 84. P. 276–285.

40. Sanchez J., Holmgren J. Cholera toxin – a foe & a friend. Indian J. Med. Res. 2011. Vol. 133, N2. P. 153–163.

41. Lell B., Agnandji S., von Glasenapp I., et al. A Randomized Trial Assessing the Safety and Immunogenicity of AS01 and AS02 Adjuvanted RTS,S Malaria Vaccine Candidates in Children in Gabon. //PLOS ONE. 2009. Vol. 4, N10. P. e7611.

42. Lu J, Sun T, Wang D, et al. Protective immune responses elicited by fusion protein containing PsaA and PspA fragments. //Immunological investigations. 2015. Vol. 44, N5. P. 482–496.

43. Leroux-Roels I., Devaster J.M., Leroux-Roels G., et al. Adjuvant system AS02V enhances humoral and cellular immune responses to pneumococcal protein PhtD vaccine in healthy young and older adults: randomised, controlled trials. //Vaccine. 2015. Vol. 33, N4. P. 577–584.

44. Pauksens K., Nilsson A.C., Caubet M., et al. Randomized controlled study of the safety and immunogenicity of pneumococcal vaccine formulations containing PhtD and detoxified pneumolysin with Alum or adjuvant system ASO2V in elderly adults. //Clinical and Vaccine Immunology. 2014. Vol. 21, N5. P. 651–660.

45. Hsu C.-F., Hsiao C.-H., Tseng S.-F., et al. PrtA immunization fails to protect against pulmonary and invasive infection by Streptococcus pneumoniae. //Respiratory Research. 2018. Vol. 19, N1. P. 187.

46. Kuipers K., Daleke-Schermerhorn M.H., Jong W.S.P., et al. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. //Vaccine. 2015. Vol. 33, N17. P. 2022–2029.

47. Lagousi T., Basdeki P., Routsias J., et al. Novel Protein-Based Pneumococcal Vaccines: Assessing the Use of Distinct Protein Fragments Instead of Full-Length Proteins as Vaccine Antigens. //Vaccines. 2019. Vol.7, N1. P. 9.

48. Firdous J., Islam M.A., Park S.-M., et al. Induction of long-term immunity against respiratory syncytial virus glycoprotein by an osmotic polymeric nanocarrier. //Acta Biomaterialia. 2014. Vol. 10, N11. P. 4606–4617.

49. Kye Y.-C., Park S.-M., Shim B.-S., et al. Intranasal immunization with pneumococcal surface protein A in the presence of nanoparticle forming polysorbitol transporter adjuvant induces protective immunity against the Streptococcus pneumoniae infection. //Acta Biomaterialia. 2019. Vol. 90. P. 362–372.

50. Vela-Ramirez J.E., Goodman J.T., Boggiatto P.M., et al. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles. //The AAPS Journal. 2015. Vol.17, N1. P. 256–267.

51. Ulery B.D., Petersen L.K., Phanse Y., et al. Rational design of pathogen-mimicking amphiphilic materials as nanoadjuvants. //Scientific Reports. 2011. Vol. 1, N1. P. 198.

52. Goodman J.T., Vela Ramirez J.E., Boggiatto P.M., et al. Nanoparticle chemistry and functionalization differentially regulates dendritic cell-nanoparticle interactions and triggers dendritic cell maturation. //Part. Part. Syst. Charact. 2014. Vol. 31, N12. P. 1269–1280.

53. Haughney S.L., Petersen L.K., Schoofs A.D., et al. Retention of structure, antigenicity, and biological function of pneumococcal surface protein A (PspA) released from polyanhydride nanoparticles. //Acta Biomaterialia. 2013. Vol.9, N9. P. 8262–8271.

54. Kataoka K., Fukuyama Y., Briles D.E., et al. Review Dendritic cell-targeting DNA-based nasal adjuvants for protective mucosal immunity to Streptococcus pneumoniae. //Microbiology and Immunology. 2017. Vol. 61, N7. P. 195–205

55. Kong I.G., Sato A., Yuki Y., et al. Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. //Infection and Immunity. 2013. Vol. 81, N5. P. 1625–1634.

56. Fukuyama Y, Yuki Y, Katakai Y, et al. Nanogel-based pneumococcal surface protein A nasal vaccine induces microRNA-associated Th17 cell responses with neutralizing antibodies against Streptococcus pneumoniae in macaques//Mucosal immunology. 2015. Vol. 8, N5. P. 1144–1153.

57. Kunda N.K., Alfagih I.M., Miyaji E.N., et al. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. //International journal of pharmaceutics. 2015. Vol. 495, N2. P.903–912.

58. Rodrigues T.C., Oliveira M.L.S., Soares-Schanoski A., et al. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. //PLOS ONE. 2018. Vol. 13, N1. P. e0191692.

59. Li B., Chen X., Yu J., et al. Protection elicited by nasal immunization with pneumococcal surface protein A (PspA) adjuvanted with bacterium-like particles against Streptococcus pneumoniae infection in mice. //Microbial Pathogenesis. 2018. Vol. 123. P. 115–119.

60. Bosma T., Kanninga R., Neef J., et al. Novel surface display system for proteins on nongenetically modified gram-positive bacteria. //Applied and Environmental Microbiology. 2006. Vol. 72, N1. P.880–889.

61. Wang D., Lu J., Yu J., et al. A Novel PspA Protein Vaccine Intranasal Delivered by Bacterium-Like Particles Provides Broad Protection Against Pneumococcal Pneumonia in Mice. //Immunological Investigations. 2019. Vol. 47, N4. P. 403–415.

62. Lu J., Guo J., Wang D., et al. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. //Human Vaccines & Immunotherapeutics. 2019. Vol. 15, N2. P. 371–380.

63. Lu J., Hou H., Wang D., et al. Systemic and mucosal immune responses elicited by intranasal immunization with a pneumococcal bacterium-like particle-based vaccine displaying pneumolysin mutant Plym2//Immunology Letters. 2017. Vol. 187. P.41–46.

64. Kataoka K., Fujihashi K., Oma K., et al. The Nasal Dendritic Cell-Targeting Flt3 Ligand as a Safe Adjuvant Elicits Effective Protection against Fatal Pneumococcal Pneumonia // Infection and Immunity. 2011. Vol. 79, N7. P.2819–2828.

65. Fukuyama Y., King J. D., Kataoka K., et al. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. //The Journal of Immunology. 2011. Vol. 186, N4. P. 2454–2461.

66. Baatarjav T., Kataoka K., Gilbert R.S., et al. Mucosal immune features to phosphorylcoline by nasal Flt3 ligand cDNA-based vaccination. //Vaccine. 2011. Vol. 29, N34. P. 5747–5757.

67. Swaminathan A., Lucas R.M., Dear K., et al. Keyhole limpet haemocyanina model antigen for human immunotoxicological studies. //British Journal of Clinical Pharmacology. 2014. Vol. 78, N5. P. 1135–1142.

68. Chan W.-Y., Entwisle C., Ercoli G., et al. A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. //Infection and Immunity. 2019. Vol.87, N3. P.e00846–18.

69. Campos I.B., Herd M., Moffitt K.L., et al. IL-17A and Complement Contribute to Killing of Pneumococci Following Immunization With a Pneumococcal Whole Cell Vaccine. //Vaccine. 2017. Vol. 35, N9. P.1306–1315.

70. Entwisle C., Hill S., Pang Y., et al. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. //Vaccine. 2017. Vol. 35, N51. P.7181–7186.

71. Rosch J.W. Promises and pitfalls of live attenuated pneumococcal vaccines. //Human Vaccines & Immunotherapeutics. 2014. Vol. 10, N10. P.3000–3003.

72. Jang A-Y., Ahn K.B., Zhi Y., et al. Serotype-Independent Protection Against Invasive Pneumococcal Infections Conferred by Live Vaccine With lgt Deletion. //Frontiers in Immunology. 2019. Vol.10. P.1212.

73. Arimoto T., Igarashi T.. Role of prolipoprotein diacylglyceryl transferase (Lgt) and lipoprotein-specific signal peptidase II (LspA) in localization and physiological function of lipoprotein MsmE in Streptococcus mutans. //Oral Microbiology and Immunology. 2008. Vol. 23, N6. P. 515–519.

74. Wichgers Schreur P.J., Rebel J.M.J., Smits M.A., et al. Lgt processing is an essential step in Streptococcus suis lipoprotein mediated innate immune activation. //PLoS ONE. 2011. Vol.6, N7. P. e22299.

75. Tomlinson G., Chimalapati S., Pollard T., et al. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins. //The Journal of Immunology. 2014. Vol. 193, N7. P. 3736–3745.

76. Michaelsen T.E., Kolberg J., Aase A., et al. The four mouse IgG isotypes differ extensively in bactericidal and opsonophagocytic activity when reacting with the P1.16 epitope on the outer membrane PorA protein of Neisseria meningitides. //Scandinavian Journal of Immunology. 2004. Vol. 59, N1. P. 34–39.

77. Wu F., Yao R., Wang H., et al. Mucosal and systemic immunization with a novel attenuated pneumococcal vaccine candidate confers serotype independent protection against Streptococcus pneumoniae in mice. //Vaccine. 2014. Vol. 32, N33. P. 4179–4188.

78. Xu X., Wang H., Liu Y., et al. Mucosal immunization with the live attenuated vaccine SPY1 induces humoral and Th2-Th17-regulatory T cell cellular immunity and protects against pneumococcal infection. //Infection and Immunity. 2015. Vol. 83, N1. P. 90–100.

79. Zhang X., Cui J., Wu Y., et al. Streptococcus pneumoniae Attenuated Strain SPY1 with an Artificial Mineral Shell Induces Humoral and Th17 Cellular Immunity and Protects Mice against Pneumococcal Infection. //Frontiers in Immunology. 2018. Vol. 8. P.1983.

80. Wang G., Cao R.-Y., Chen R., et al. Rational design of thermostable vaccines by engineered peptide-induced virus self-biomineralization under physiological conditions. //Proceedings of the National Academy of Sciences. 2013. Vol. 110, N19. P. 7619–7624.


Для цитирования:


Грубер И.М., Кукина О.М., Егорова Н.Б., Жигунова О.В. Различные технологии получения пневмококковых иммуногенов:определение новых подходов к их разработке. Эпидемиология и Вакцинопрофилактика. 2021;20(1):76-91. https://doi.org/10.31631/2073-3046-2021-20-1-76-91

For citation:


Gruber I.M., Kukina O.M., Egorova, N.B., Zhigunova O.V. Different Technologies for Obtaining Pneumococcal Immunogens. Epidemiology and Vaccinal Prevention. 2021;20(1):76-91. (In Russ.) https://doi.org/10.31631/2073-3046-2021-20-1-76-91

Просмотров: 235


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)