Formation of Herd Immunity to SARS-CoV-2 in the Population of Moscow
https://doi.org/10.31631/2073-3046-2022-21-1-81-91
Abstract
Relevance. The research of the dynamics of population immunity formation is an important component of epidemiological surveillance, especially during the pandemic period. Identifying the features of the course of the epidemic process of a particular infection provides an opportunity to make the right decisions both in the fight against the disease and in its prevention. Aims. Evaluate the dynamics of the formation of collective immunity in the population of the city of Moscow. Materials & Methods. The presence of immunity in the population was assessed by immunochemiluminescent analysis of blood serum of patients for the presence of antibodies IgM and IgG to SARS-CoV-2. Results. During the analysis of the annual dynamics of IgM detection, a gradual decrease in this indicator was recorded. The dynamics of the combined detectability of IgM/IgG has a wave-like course. It should be noted that the curves of the dynamics of the IgM detectability and the combined IgM/IgG detectability reflect multidirectional trends: the summer rise in the IgM detectability coincides with the fall and the lowest values of the IgM/IgG detectability indicator. Afterwards, the decrease in the IgM detectability is accompanied by an increase in the combined IgM / IgG detectability. Detectability of IgG has a pronounced tendency to rise with short time intervals of decline. In the first three months of testing, a gradual decrease in detectability was recorded from 15.2 to 10.8%. However, since August, there has been a new increase in detectability of IgG to 45.5% in marth and subsequent stabilization in the range of 44.3–45.5%. Conclusions. The level of seroprevalence for the period of May 2021 is 44.3%. Detection during screening of patients with IgM and partially with a combination of IgM / IgG may indicate the presence of a significant hidden component of the epidemic process, which may lead to an increase in morbidity.
Keywords
About the Authors
M A GodkovRussian Federation
Mikhail A. Godkov – Head of laboratory diagnostics department; Head of the Department of Clinical Laboratory Diagnostics
Moscow
+7 (903) 509-21-45
V V Shustov
Russian Federation
Valeriy V. Shustov – Doctor of Clinical Laboratory Diagnostic
Moscow
+7 (923) 183-52-71
V A Korshunov
Russian Federation
Vladimir A. Korshunov – Associate professor of the department
Moscow
+7 (495) 609-14-00
F S Stepanov
Russian Federation
Fedor S. Stepanov – Doctor of Clinical Laboratory Diagnostic
Moscow
+7 (967) 236-55-21
A I Bazhenov
Russian Federation
Alexey I. Bazhenov – Head of the Laboratory of Clinical Immunology
Moscow
+7 (903) 121-50-06
References
1. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi:10.1056/NEJMoa2001017
2. Kuiken T, Fouchier RA, Schutten M, et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003;362(9380):263 –270. doi:10.1016/S0140-6736(03)13967-0
3. Ksiazek TG, Erdman D, Goldsmith CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348(20):1953 –1966. doi:10.1056/ NEJMoa030781
4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814 –1820. doi:10.1056/NEJMoa1211721
5. Ludwig S, Zarbock A. Coronaviruses and SARS-CoV-2: A Brief Overview. Anesth Analg. 2020;131(1):93–96. doi:10.1213/ANE.0000000000004845
6. Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614–14621. doi:10.1128/JVI.79.23.14614-14621.2005
7. Laboratory testing for Middle East Respiratory Syndrome coronavirus, interim guidance (revised), January 2019, WHO/MERS/LAB/15.1/Rev1/2019, World Health Organization, 2018. Available at: https://apps.who.int/iris/bitstream/handle/10665/259952/WHO-MERS-LAB-15.1-Rev1-2018-eng.pdf?sequence=1&isAllowed=y Accessed: 15 September 2021.
8. Profilaktika. diagnostika i lecheniye novoy koronavirusnoy infektsii 2019-nCoV. Vremennyye metodicheskiye rekomendatsii Ministerstva zdravookhraneniya Rossiyskoy Federatsii. Pulmonologiya. 2019;29(6):655–672 (In Russ.). https://doi.org/10.18093/0869-0189-2019-29-6-655-672
9. Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. doi:10.1016/j.arr.2020.101205
10. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China [published correction appears in JAMA Intern Med. 2020 Jul 1;180(7):1031]. JAMA Intern Med. 2020;180(7):934–943. doi:10.1001/jamainternmed.2020.0994
11. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy [published correction appears in JAMA. 2020 Apr 28;323(16):1619]. JAMA. 2020;323(18):1775–1776. doi:10.1001/jama.2020.4683
12. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
13. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032
14. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study [published correction appears in Lancet. 2020 Mar 28;395(10229):1038] [published correction appears in Lancet. 2020 Mar 28;395(10229):1038]. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3
15. Lee VJ, Chiew CJ, Khong WX. Interrupting transmission of COVID-19: lessons from containment efforts in Singapore. J Travel Med. 2020;27(3):taaa039. doi:10.1093/jtm/taaa039
16. Lee J. Mental health effects of school closures during COVID-19 [published correction appears in Lancet Child Adolesc Health. 2020 Apr 17]. Lancet Child Adolesc Health. 2020;4(6):421. doi:10.1016/S2352-4642(20)30109-7
17. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;296(2):E32– E40. doi:10.1148/radiol.2020200642
18. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020;323(22):2249–2251. doi:10.1001/jama.2020.8259
19. Profilaktika. diagnostika i lecheniye novoy koronavirusnoy infektsii (COVID-19). Vremennyye metodicheskiye rekomendatsii. Versiya 11 (07.05.2021). Minzdrav Rossii. Available at: https://static0.minzdrav.gov.ru/system/attachments/attaches/000/055/735/original/B%D0%9C%D0%A0_COVID-19.pdf. [Accessed: 15.09.2021] (in Russ.).
20. Madore DV, Meade BD, Rubin F, Deal C, Lynn F; Meeting Contributors. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: meeting at the crossroads. Vaccine. 2010;28(29):4539–4547. doi:10.1016/j.vaccine.2010.04.094
21. Sputnik V: First Registered COVID-19 Vaccine. Official website of RIA-news (in Russ.). Available at: https://ria.ru/20200812/1575689573.html [Access 15.09.2021]
22. Russia was the first in the world to register a vaccine against coronavirus. Official website of TASS (in Russ.). Available at: https://tass.ru/obschestvo/9171179 [Access 15.09.2021]
23. Okba NMA, Müller MA, Li W, et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis. 2020;26(7):1478–1488. doi:10.3201/eid2607.200841
24. Popova AY, Ezhlova EB, Melnikova AA, et al. Characteristics of the Herd Immunity to SARS-CoV-2 in Residents of the Saratov Region under COVID-19 Epidemic. Problems of Particularly Dangerous Infections. 2020;4:106–116 (in Russ.).
25. Popova AY, Ezhlova EB, Melnikova AA, et al. Herd Immunity to SARS-CoV-2 among the Population in Saint-Petersburg during the COVID-19 Epidemic. Problems of Particularly Dangerous Infections. 2020;3:124–130 (in Russ.).
26. Fontanet A, Cauchemez S. COVID-19 herd immunity: where are we?. Nat Rev Immunol. 2020;20(10):583-584. doi:10.1038/s41577-020-00451-5
27. Koronavirus: statistika (ofitsialnyy websayt). Available at: https://yandex.ru/covid19/stat. [Access 15.09.2021] (in Russ.).
28. Koronavirus segodnya – statistika i monitoring na karte onlayn (ofitsialnyy websayt). Available at: https://koronavirustoday.ru [Access 15.09.2021] (in Russ.).
29. Tracking SARS-CoV-2 variants. Official website of the World Health Organization. Available at: https://www.who.int/ru/activities/tracking-SARS-CoV-2-variants/tracking-SARS-CoV-2-variants [Access 15.09.2021]
30. Zeng F, Dai C, Cai P, et al. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. J Med Virol. 2020;92(10):2050-2054. doi:10.1002/jmv.25989
31. Popova AY, Smirnov VS, Andreeva EE, et al. SARS-CoV-2 Seroprevalence Structure of the Russian Population during the COVID-19 Pandemic. Viruses. 2021;13(8):1648. Published 2021 Aug 19. doi:10.3390/v13081648
Review
For citations:
Godkov M.A., Shustov V.V., Korshunov V.A., Stepanov F.S., Bazhenov A.I. Formation of Herd Immunity to SARS-CoV-2 in the Population of Moscow. Epidemiology and Vaccinal Prevention. 2022;21(1):81-91. (In Russ.) https://doi.org/10.31631/2073-3046-2022-21-1-81-91