Preview

Epidemiology and Vaccinal Prevention

Advanced search

Staphylococcus aureus pathogenicity Factors and their Role in the Infection process and the induction of the postvaccination immunity

https://doi.org/10.31631/2073-3046-2016-15-3-72-82

Abstract

The rapid development of molecular-biological and genetic methods of research led to the broadening and deepening of knowledge of the pathogenesis of infection diseases, the structure of pathogenicity factors and their role in the development of the post-infection and post-vaccination immunity. In the review presented the literature data of this problem in relation to diseases, caused by S. aureus, which acquired great social and economic significance. Presented the list of numerous pathogenicity factors of S. aureus, their significance in the development of the infectious process and the results used to create vaccine preparations. Most of the vaccines in the construction of which used the capsular polysaccharides, toxins, protein antigens of the cell wall are in various stages of preclinical and clinical trials. Preliminary data indicate a need to use it to create protective immunity multiantigenic complex with focus on numerous factors of pathogenicity of S. aureus.

About the Authors

I. M. Gruber
Federal State Budgetary Research Institution «I.I. Mechnikov Sientific Research Institute for Vaccine and Sera»
Russian Federation


N. B. Egorova
Federal State Budgetary Research Institution «I.I. Mechnikov Sientific Research Institute for Vaccine and Sera»
Russian Federation


E. A. Astashkina
Federal State Budgetary Research Institution «I.I. Mechnikov Sientific Research Institute for Vaccine and Sera»
Russian Federation


References

1. Daniliv A.I., Alekseeva I.V., Asner T.V., Vlasova E.E., Danilova E.M., Deknhnich A.V. et al. Etiology of infective endocarditis in Russia. Clin. Microbiol. Antimicrob. Chemother. 2015; 17 (1): 4 – 10 (in Russian).

2. Teplyakova O.V., Rudnov V.A., Shlykova G.I, Dotsenko T.G. Septic arthritis in adults. Clin Microbiol Antimicrob Chemother. 2015; 17 (3): 187 – 206 (in Russian).

3. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol. 2010; 64: 143 – 162.

4. Laabei M., Recker M., Rudkin JK., Aldeljawi M., Gulay Z., Sloan TJ. et al. Predicting the virulence of MRSA from its genome sequence. Genome Res. 2014; 24: 839 – 849.

5. Noskin G.A, Rubin R.J, Schentag J.J., Kluytmans J., Hedblom E.C., Smulders M. et al. The burden of Staphylococcus aureus infections on hospitals in the United States: an analysis of the 2000 and 2001 Nationwide Inpatient Sample Database. Arch Intern Med. 2005; 165 (15):1756 – 1761.

6. Carrillo-Marquez M.A., Hulten K.G., Hammerman W., Lamberth L., Mason E.O., Kaplan S.L. Staphylococcus aureus pneumonia in children in the era of community-acquired methicillin-resistance at Texas Children’s Hospital. Pediatr. Infect. Dis. J. 2011; 30 (7): 545 – 550.

7. Del Giudice P., Tattevin P., Etienne J. Community-acquired methicillin-resistant Staphylococcus aureus: Review. Рresse Med. 2012; 41 (7 – 8): 713 – 720.

8. Garcia-Romo G.S., Gonzalez-Ibarra M., Donis-Hernandez F.R., Zendejas-Buitron V.M., Pedroza-Gonzalez A. Immunization with heat-inactivated Staphylococcus aureus induced an antibody response mediated by IgG1 and IgG2 in patients with recurrent tonsillitis. Microbiol Immunol. 2015; 59(4):193-201.

9. von Eiff C., Becker K., Machka K., Stammer H., Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med. 2001; 344 (1): 11 – 16.

10. McCarthy A.J., Lindsay J.A. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiology 2010; 10: 173. PMC 2905362.

11. Broughan J., Anderson R., Anderson A.S. Strategies for and advances in the development of Staphylococcus aureus prophylactic vaccines. Expert Rev. Vaccines 2011; 10: 695 – 708.

12. DeDent A., Kim H.K., Missiakas D., Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol. 2012; 34: 317 – 333.

13. Daum R.S., Spellberg B. Progress toward a Staphylococcus aureus vaccine. Clin. Infect. Dis. 2012; 54 (4): 560 – 567.

14. Dmitrenko O.A. Genus a Staphylococcus. Manual of Medical Microbiology. Book III. Volume One. Opportunistic infections: pathogens and etiologic diagnosis. Ed.: A.S. Labinskaya, N.N. Kostyukova. Moscow: Publishing Binom. 2013; 31 – 87.

15. Scully I.L., Liberator P.A., Jansen K.U., Anderson A.S. Covering all the bases: preclinical development of an effective Staphylococcus aureus vaccine. Frontiers in Immunol. 2014; 5 (art 109): 1 – 7.

16. Lin L., Ibrahim A.S., Xu X., Farber J.M., Avanesian V., Baquir B. et.al. Th1- Th17 cells mediate protective adaptive immunity against Staphylococcus aureus and Candida albicans infection in mice. PLoSPathog. 2009; 5 (12): РМС 2792038.

17. Rigby K.M., DeLeo F.R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol. 2012; 34 (2): 237 –259.

18. DeLeo F.R., Diep B.A., Otto M. Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 2009; 23 (1): 17 – 34.

19. Lorenz E., Mira J.P., Cornish K.L., Arbour N.C., Schwartz D.A. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun. 2000; 68 (11): 6398 – 6401.

20. Quilty S., Kwok G., Hajkowicz K., Currie B. High incidence of methicillin-resistant Staphylococcus aureus sepsis and death in patients with febrile neutropenia at Royal Darwin Hospital. Intern Med J. 2009; 39: 557 – 559.

21. Spellberg B., Ibrahim A.S., Yeaman M.R., Lin L., Fu Y., Avanesian V., et al. The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun. 2008; 76 (10): 4574 – 4580.

22. Maródi L., Cypowyj S., Tóth B., Chernyshova L., Puel A., Casanova J.L. Molecular mechanisms of mucocutaneous immunity against Candida and Staphylococcus species. J. Allergy Clin. Immunol. 2012; 130 (5): 1019 – 1027.

23. Joshi A., Pancari G., Cope L., Bowman E.P., Cua D., Proctor R.A., McNeely T. Immunization with Staphylococcus aureus iron regulated surface determinant B (IsdB) confers protection via Th17/IL17 pathway in a murine sepsis model. Hum Vaccin Immunother. 2012; 8: 336 – 346.

24. Narita K., Hu D.L., Mori F., Wakabayashi K., Iwakura Y., Nakane A. Role of interleukin-17A in cell-mediated protection against Staphylococcus aureus infection in mice immunized with the fibrinogen-binding domain of clumping factor A. Infect Immun. 2010; 78: 4234 – 4242.

25. Hanke M.L., Heim C.E., Angle A., Sanderson S.D., Kielian T. Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J Immunol, 2013; 190 : 2159 – 2168.

26. Fournier B. The function of TLR2 during staphylococcal diseases. Front. Cell. Inf. Microbiol. 2013; 2: 167.

27. Fowler V.G., Proctor R.A. Where does a Staphylococcus aureus vaccine stand? Clin. Microbiol. Infect. 2014; 20, Suppl. 5: 66 – 75.

28. Schreiner J., Kretschmer D., Klenk J., Otto M., Buhring H-J, Stevanovic S. et al. Staphylococcus aureus phenol-soluble modulin peptides modulate dendritic cell functions and increase in vitro priming of regulatory T cells. J Immunol. 2013; 190: 3417 – 3426.

29. Bagnoli F., Bertholet S., Grandi G. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol. 2012; 2: 1 – 4.

30. Frank K.M., Zhou T., Moreno-Vinasco L., Hollett B., Garcia J.G., Bubeck Wardenburg J. Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response. Infect Immun. 2012; 80: 3161 – 3169.

31. Fritz S.A., Tiemann K.M., Hogan P.G., Epplin E.K., Rodriguez M., Al-Zubeidi D.N. et al. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin Infect Dis. 2013; 56 (11): 1554 – 1561.

32. Rasigade J.P., Sicot N., Laurent F., Lina G., Vandenesch F., Etienne J. A history of Panton–Valentine leukocidin (PVL)-associated infection protects against death in PVL-associated pneumonia. Vaccine. 2011; 29 (25): 4185 – 4186.

33. Spellberg B., Daum R. Development of vaccine against Staphylococcus aureus. Semin immunopathol. 2012; 34 (2): 335 – 348.

34. Stranger-Jones Y.K., Bae T., Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci USA. 2006; 103: 16942 – 16947.

35. Jansen K.U., Girgenti D.Q., Scully I.L., Anderson A.S. Vaccine review: Staphyloccocus aureus vaccines: Problems and prospects. Vaccine. 2013; 31: 2723 – 2730.

36. Bubeck Wardenburg J., Schneewind O. Vaccine protection against Staphylococcus aureus pneumonia. J Exp Med. 2008; 205 (2): 287 – 294.

37. Brown E.L., Dumitrescu O., Thomas D., Badiou C., Koers E.M., Choudhury P. et al. The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin. Microbiol. Infect. 2009; 15 (2): 156 – 64.

38. Schennings T., Heimdahl A., Coster K., Flock J.I. Immunisation with fibronectin-binding protein from Staphylococcus aureus protects against experimental endocarditis in rats. Microb. Pathogen. 1993; 15: 227 – 236.

39. Que Y.A., Haefliger J.A., Piroth L., François P., Widmer E., Entenza J.M. et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med. 2005; 201 (10): 1627 – 1635.

40. Gong R., Hu C., Xu H., Guo A., Chen H., Zhang G., Shi L.. Clumping factor A binding region A in a subunit vaccine against Staphylococcus aureus-induced mastitis in mice. Clin. Vaccine Immunol. 2010; 17 (11): 1746 – 1752.

41. Josefsson E., Hartford O., O’Brien L., Patti J.M., Foster T. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J. Infect. Dis. 2001; 184: 1572 – 1580.

42. Cheng A.G., Kim H.K., Burts M.L., Krausz T., Schneewind O., Missiakas D.M. 2009. Genetic requirements for Staphylococcus aureus abscessformation and persistence in host tissues. FASEB J. 2009; 23: 3393 – 3404.

43. 43 Cheng A.G., McAdow M., Kim H.K., Bae T., Missiakas D.M., Schneewind O. Contribution of сoagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog. 2010; 6 (8): 1 – 18.

44. Kim H.K., Cheng A.G., Kim H-Y, Missiakas D.M., Schneewind O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J. Exp. Med. 2010; 207 (9): 1863 – 1870.

45. Kim H.K., DeDent A., Cheng A.G., McAdow M., Bagnolib F., Missiakas D.M., Schneewind O. IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine. 2010; 28: 6382 – 6392.

46. Mazmanian S.K., Scaar E.P., Gaspar A.H., Humayun M., Gornicki P. Passage of geme-iron across the envelope of Staphylococcus.aureus. Science. 2003; 299: 906 – 909.

47. Bjerketorp J., Jacobsson K., Frykberg L. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett. 2004; 234: 309 – 314.

48. McAdow M., Kim H.K., DeDent A.C., Hendrickx A.P.A., Missiakas D.M., Schneewind O. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog. 2011; 7 (10). PMCID: PMC3197598.

49. Foster T.J., Geoghegan J.A., Ganesh V.K., Hook M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014; 12 (1): 49 – 62.

50. O’Riordan K., Lee J.C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. Jan. 2004; 17 (1): 218 – 234.

51. Fattom A.L., Sarwar J., Ortiz A., Naso R. Staphylococcus aureus capsular polysaccharide vaccine and CP-specific antibodies protect mice against bacterial challenge. Infect. Immun. 1996; 64 (5): 1659 – 1665.

52. Kropec A., Maira-Litran T., Jefferson K.K., Grout M., Cramton S.E., Götz F. et al. Poly-N-acetylglucosamine production in Staphylococcus aureus is essential for virulence in murine models of systemic infection. Infect. Immun. 2005; 73 (10): 6868 – 6876.

53. Kely-Quintos C., Cavacini L.A., Posner M.R., Goldmann D., Pier G.B. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect. Immun. 2006; 74 (5): 2742 – 2750.

54. Daum R.S. Staphylococcus aureus vaccines. Vaccines. Eds.: Plotkin S.A., Orenstein W.A., Offit P.A. Elsevier. 2008; 1307 – 1315.

55. Anderson A.S., Miller A.A., Donald R.G., Scully I.L., Nanra J.S., Cooper D., Jansen K.U. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum. Vaccin. Immunother. 2012; 8 (11): 1585 – 1594.

56. Nanra J.S., Buitrago S.M., Crawford S., Ng J., Fink P.S., Hawkins J. et al. Capsular polysaccharides are an important immune evasion mechanism for Staphylococcus aureus. Hum. Vaccin. Immunother. 2013; 9 (3): 480 – 487.

57. Matalon A.M., Buerkert J., Block G., Hohenboken M., Fattom A., Horwirth G. et al. Efficacy profile of a bivalent Staphylococcus aureus glycoconjugate investigational vaccine in adults on haemodialysis: phase III randomized study. International symposium on staphylococci and staphylococcal infections. Lyon France; 2012; 9 – 114.

58. Moustafa M., Aronoff G.R., Chandran C., Hartzel J.S., Smugar S.S., Galphin C.M. et al. Phase IIa study of the immunogenicity and safety of the novel Staphylococcus aureus vaccine V710 in adults with end-stage renal disease receiving hemodialysis. Clin. Vaccine Immunol. 2012; 19 (9): 1509 – 1516.

59. Fowler V.G., Allen K.B., Moreira E.D., Moustafa M., Isgro F., Boucher H.W. et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. J. Am. Med .Assoc. 2013; 309 (13): 1368 – 1378.

60. Ohlsen K., Lorenz U. Immunotherapeutic strategies to combat staphylococcal infections. Intern. J. of Med. Microbiol. 2010; 300: 402 – 410.

61. Vaccines in development. Medicine in development for vaccines. 2013; 22 – 27.

62. Nissen M., Marshall H., Richmond P., Shakib S., Jiang Q., Cooper D.et al. A randomized phase I study of the safety and immunogenicity ofthree ascending dose levels of a 3-antigen Staphylococcus aureus vaccine (SA3Ag) in healthy adults. Vaccine. 2015; 33 (15): 1846 – 1854.

63. denReijer P.M., Lemmens-denToom N., Kant S., Snijders S.V., Boelens H., Tavakol M., et al. Characterization of the humoral immune response during Staphylococcus aureus bacteremia and global gene expression by Staphylococcus aureus in humanblood. PLoSOne. 2013; 8 (1): e53391.

64. Rozemeijer W., Fink P., Rojas E., Jones C.H., Pavliakova D., Giardina P. et al. Evaluation of approaches to monitor Staphylococcus aureus virulence factor expression during human disease. PLoS ONE. 2015; 10 (2): e0116945.

65. Gening M.L., Maira-Litran T., Kropec A., Skurnik D., Grout M., Tsvetkov Y.E. et al. Synthetic ββ-(1→6)-linked N-acetylated and nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens. Infect Immun. 2010; 78 (2): 764 – 772.

66. Cywes-Bentley C., Skurnik D., Zaidi T., Rouxa D., Rosane B., DeOliveira et al. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. PNAS. 2013; 110 (24): E2209 – 2218.

67. Pozzi C., Wilk K., Lee J.C., Gening M., Nifantiev N., Pier G.B. Opsonic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One. 2012; 7 (10). PMID 23077517.

68. Skurnik D., Merighi M., Grout M., Gadjeva M., Maira-Litran T., Ericsson M. et al. Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J Clin Invest. 2010; 120 (9): 3220 – 3233.

69. Efremova V.N., Egorova N.B., Masyukova C.A. Acellular antistaphylococcal vaccine for treatment of chronic staphylococcal infection. Patent Ru., № 2533815; 2014 (in Russian).

70. Egorova N.B., Efremova V.N., Kurbatova E.A., Gruber I.M. Experimental, clinical and immunologic assessment of acellular staphylococcal vaccine Staphylovac. Zh Microbiol. (Moscow). 2008; 6: 102 – 108 (in Russian).

71. Kuzmenko O.M., Zlygostev S.A., Mikchaylova N.A., Gruber I.M., Akhmatova N.K., Egorova N.B. et al. Characteristics of complexes of Staphylococcus aureus vaccine strains obtained in different cultivation conditions. Zh. Microbiol. (Moscow). 2010; 2: 51 – 54 (in Russian).

72. Gruber I.M., Egorova N.B., Mikhailova N.A., Cherkasova L.S., Tarasova O.E., Astashkina E.A. et al. Study of protective activity of «Staphylovac-2» vaccine. Zh Microbiol. 2014; 6: 54 – 58 (in Russian).

73. Cherkasova L.S., Plekhanova N.G., Tarasova O.E., Astashkina E.A., Melnikov N.V., Gruber I.M. et al. Immunogenic properties of experimental production series of Staphylovac-2 vaccine. Zh. Microbiol. 2014; 5: 86 – 90 (in Russian).

74. Gruber I.M., Egorova N.B., Kurbatova E.A., Mikhailova N.A.. Strategy for design of antistaphylococcal drugs for immunoprophylaxis and immunotherapy. Epidemiologia i Infektionnye Bolesni. Aktualniye voprosi. 2013; 4: 31 – 38 (in Russian).


Review

For citations:


Gruber I.M., Egorova N.B., Astashkina E.A. Staphylococcus aureus pathogenicity Factors and their Role in the Infection process and the induction of the postvaccination immunity. Epidemiology and Vaccinal Prevention. 2016;15(3):72-82. (In Russ.) https://doi.org/10.31631/2073-3046-2016-15-3-72-82

Views: 3129


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)