Preview

Epidemiology and Vaccinal Prevention

Advanced search

Photodynamic Inactivation as a Promising Method of Combating Resistant Strains of Staphylococci

https://doi.org/10.31631/2073-3046-2024-23-3-19-26

Abstract

Relevance. The development of antimicrobial drugs and alternative methods, technologies and means of prevention, diagnosis and treatment of human infectious diseases caused by antibiotic-resistant microorganisms is one of the priorities of ensuring the biological safety of the country. Aims. To evaluate the bactericidal activity of tetrapyrrole macroheterocycles (porphyrins) at different light irradiation durations in relation to staphylococci, in vitro. Materials and methods. Studied strains of microorganisms: museum strains of microorganisms – S. aureus ATCC 29213, S. epidermidis ATCC 14990 and antibiotic-resistant strains of bacteria of the genus Staphylococcus (n=18) isolated from clinical biomaterial and from environmental objects in a medical organization. The studied chemical compounds are three different compounds of water-soluble asymmetrically substituted porphyrins containing heterocyclic fragments on the periphery of the porphyrin cycle (residues of benzoxazole, N-methylbenzimidazole and benzothiazole). Results. The activity of all three porphyrin compounds in relation to museum strains of staphylococcus and 77.8% of clinical antibiotic-resistant strains (n=14; 95% CI 20.1-97.5) turned out to be maximal (complete lysis) after 10 minutes of irradiation. Conclusions. The tested tetrapyrrole macroheterocycles (porphyrins) exhibit bactericidal activity against museum and clinical strains of staphylococcus, with different levels of antibiotic resistance, which determines Keywords: antibiotic resistance, water-soluble porphyrin, photodynamic inactivation, photosensitizer, photochemistry, staphylococci No conflict of interest to declare.

About the Authors

D. V. Kvashnina
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Darya V. Kvashnina - Cand. Sci. (Med.), associate professor of the Department of Epidemiology, Microbiology and Evidence-Based, Medicine Privolzhsky Research Medical University

10/1, Minin and Pozharsky square, BOX-470, Nizhny Novgorod, 603950

+7 (906) 366-81-49



I. Yu. Shirokova
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Irina Yu. Shirokova – Cand. Sci. (Med.), Head of the Bacteriological laboratory, bacteriologist

Nizhny Novgorod

+7 (929) 042-65-15



N. A. Belyanina
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Natalya A. Belyanina – biologist of the bacteriological laboratory of the University Clinic

Nizhny Novgorod

+7 (920) 024-31-71



O. V. Ivanova
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Olga V. Ivanova – laboratory assistant of the research department

Nizhny Novgorod

+7 (953) 550-05-29



N. V. Stifeev
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Natalia V. Stifeeva – laboratory assistant of the research department

Nizhny Novgorod

+7 (960) 194-28-20



O. V. Kovalishena
Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Olga V. Kovalishena – Dr. Sci. (Med.), Head of the Department of Epidemiology, Microbiology and Evidence-Based Medicine

Nizhny Novgorod

+7 (903) 608-39-08



S. A. Syrbu
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Sergey A. Syrbu – Dr. Sci. (Chemical), Head of the laboratory «New Materials based on macrocyclic compounds»

Ivanovo



N. Sh. Lebedeva
G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences
Russian Federation

Natalia Sh. Lebedeva – Dr. Sci. (Chemical), Head of the Laboratory «Physical Chemistry of supramolecular systems based on macrocyclic compounds and polymers»

Ivanovo

+7 (4932) 33-62-72



References

1. European Centre for Disease Prevention and Control. Antimicrobial consumption in the EU/EEA (ESAC-Net) -Annual Epidemiological Report 2022. Stockholm: ECDC; 2023.

2. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2016-2017. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.

3. Karpov OE, Gusarov VG, Kamyshova DA, et al. Evaluation of the effectiveness of antimicrobial stewardship program: results from a ten-year study in a multidisciplinary hospital Clinical microbiology and antimicrobial chemotherapy.2023;25(3):283-295 (In Russ). DOI 10.36488/cmac.2023.3.283-295.

4. Rasporyazheniye Pravitel’stva Rossiyskoy Federatsii ot 25 sentyabrya 2017 goda N 2045-r «Ob utverzhdenii «Strategii preduprezhdeniya rasprostraneniya antimikrobnoy rezistentnosti v Rossiyskoy Federatsii na period do 2030 goda» (In Russ).

5. Meerovich G, Akhlyustina E, Romanishkin I, et al. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther. 2023;44:103853. doi: 10.1016/j.pdpdt.2023.103853.

6. Rapacka-Zdończyk A, Woźniak A, Michalska K, et al. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne). 2021;12(8):642609. doi: 10.3389/fmed.2021.642609.

7. Wozniak A, Grinholc M. Combined Antimicrobial Activity of Photodynamic Inactivation and Antimicrobials-State of the Art. Front Microbiol. 2018; 9(8):930. doi: 10.3389/fmicb.2018.00930.

8. Kharkwal G, Sharma S, Huang Y, et al. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011;43(7):755–67. doi: 10.1002/lsm.21080.

9. Kuvshinov AV, Naumovich SA. Osnovnyye mekhanizmy fotodinamicheskoy terapii. Sovremennaya stomatologiya. 2012;54(1):18–21. (In Russ).

10. Pérez C, Zúñiga T, Palavecino C. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagnosis Photodyn Ther. 2021;34:102285. doi: 10.1016/j.pdpdt.2021.102285.

11. Rkein AM, Ozog DM. Photodynamic therapy. Dermatol Clin. 2014 Jul;32(3):415–25, x. doi: 10.1016/j.det.2014.03.009. PMID: 24891062.

12. Sułek A, Pucelik B, Kobielusz M, et al. Photodynamic inactivation of bacteria with porphyrin derivatives: effect of charge, lipophilicity, ROS generation, and cellular uptake on their biological activity in vitro. Int J Mol Sci. 2020;21:8716. DOI: 10.3390/ijms21228716.

13. Radjabov AA, Derbenev VA, Ismailov GI, et al. Antibacterial photodynamic therapy of purulent wounds in soft tissues. Laser Medicine. 2017;21(2):46–49. (In Russ.) https://doi.org/10.37895/2071-8004-2017-21-2-46-49.

14. Dabrowski J. Reactive oxygen species in photodynamic therapy: mechanisms of their generation and potentiation. Adv. Inorg. Chem. 2017; 70:343–394. doi: 10.1016/bs.adioch.2017.03.002

15. Kustov A, Morshnev Ph, Kukushkina N, et al. The effect of molecular structure of chlorin photosensitizers on photo-bleaching of 1,3-diphenylisobenzofuran—the possible evidence of iodine reactive species formation. Comptes Rendus Chimie. Comptes Rendus Chimie, 2022;25:97-102; DOI: 10.5802/crchim.158.

16. Lebedeva NS, Gubarev YA, Koifman MO, et al. The Application of Porphyrins and Their Analogues for Inactivation of Viruses. Molecules.2020;25(19):4368. DOI: 10.3390/molecules25194368.

17. Kiselev AN, Lebedev MA, Syrbu SA, et al. Sintez i issledovaniye vodorastvorimykh nesimmetrichnykh kationnykh porfirinov kak potentsial’nykh fotoinaktivatorov patogenov. Izvestiya Akademii nauk. Seriya khimicheskaya.2022;71(12):2691–2700. (In Russ).

18. Rekomendacii. Opredelenie chuvstvitel’nosti mikroorganizmov k antimikrobnym preparatam. Versiya 2021-01. Mezhregional’naya associaciya po klinicheskoj mikrobiologii i antimikrobnoj himioterapii. M.: 2021. Accessed April 1, 2024. (In Russ.). https://www.antibiotic.ru/files/321/clrec-dsma2021.pdf

19. Aslanov BI, Zuyeva LP, Punchenko OYe, et al. Ratsional’noye primeneniye bakteriofagov v lechebnoy i protivoepidemicheskoy praktike. Metodicheskiye rekomendatsii. Moskva, 2022.32 p. (In Russ).


Review

For citations:


Kvashnina D.V., Shirokova I.Yu., Belyanina N.A., Ivanova O.V., Stifeev N.V., Kovalishena O.V., Syrbu S.A., Lebedeva N.Sh. Photodynamic Inactivation as a Promising Method of Combating Resistant Strains of Staphylococci. Epidemiology and Vaccinal Prevention. 2024;23(3):19-26. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-3-19-26

Views: 529


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)