Optimising Conditions for the Preservation of Extremely Oxygen Sensitive Obligate Anaerobes of the Gut Microbiota as Candidates for Probiotic Strains
https://doi.org/10.31631/2073-3046-2024-23-6-54-60
Abstract
Obligate anaerobic difficult culture bacteria, which make up the bulk of the microbiota of the large intestine, are potential candidates for the development of highly effective new generation probiotics, since they are capable of synthesizing a variety of metabolites, including short-chain fatty acids, which have a stimulating effect on both commensal bacteria and host cells. However, for their long-term preservation, it is necessary to carefully select the preservation method and protective components. To evaluate the efficacy of using different cryoprotectants to increase the viability of obligate anaerobic difficult culture bacteria when preserved by lyophilisation and cryopreservation methods. The studies showed that freeze-drying contributed most to the preservation of the viability of Faecalibacterium prausnitzii, Anaerostipes hadrus, Eubacterium hallii, provided that they were used as a stabilizing medium, which included inulin, cysteine and riboflavin, ensuring the preservation of the initial bacterial titer for 30 days. Among the studied bacteria, the effectiveness of cryopreservation was shown for A. hadrus, since it ensured the survival of bacteria at the initial level for 14 days of storage, regardless of the cryopreservative used, but by the 30th day their viability decreased significantly (by 100 times when using liquid as a cryopreservant). nutrient medium 110 with minced meat and carbohydrates with the addition of glycerin, 10 000 with the commercial cryopreservative CRYOINSTANT). The results obtained allow us to recommend lyophilization as the most optimal method for long-term storage of probiotic strains of bacteria using highly effective stabilizers.
About the Authors
B O. BembeevaRussian Federation
Bayr O. Bembeeva – researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (962) 728-21-35
E. L. Isaeva
Russian Federation
Elena L. Isaeva – Cand. Sci. (Med.), Senior researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (903) 152-82-79
V. V. Muravieva
Russian Federation
Vera V. Muravieva – Cand. Sci. (Biol.), Senior researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (906) 723-72-35
K. N. Zhigalova
Russian Federation
Kseniya N. Zhigalova – Researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (926) 059-21-19
O. V. Nechaeva
Russian Federation
Olga V. Nechaeva – Dr. Sci. (Biol.), Senior researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (927) 108-11-08
D. Kh. Bazukheyr
Russian Federation
Dalyal Kh. Bazukheyr – junior researcher at the Institute of Microbiology, Antimicrobial Therapy and Epidemiology
Moscow
+7 (906) 265-25-51
T. V. Priputnevich
Russian Federation
Tatiana V. Priputnevich – Corresponding Member of Russian Academy of Sciences, Dr. Sci. (Med.), Director of Microbiology, Antimicrobial therapy and Epidemiology Institute
Moscow
+7 (910) 414-56-16
References
1. Khan M. T., Van Dijl J. M., Harmsen H. J. M. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air. PLoS One, vol. 9, no. 5, 2014, doi: 10.1371/journal.pone.0096097.
2. Goldin B. R. Health benefits of probiotics. Nutr. 1998 Oct;80(4):S203-7. PMID: 9924285.
3. Vyas U. and Ranganathan N. Probiotics, prebiotics, and synbiotics: Gut and beyond. Gastroenterology Research and Practice. 2012. doi: 10.1155/2012/872716.
4. Gibson G. R. and Roberfroid M. B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, vol. 125. no. 6. 1995. doi: 10.1093/jn/125.6.1401.
5. Gibson G. R., Beatty E. R., Wang X., et al. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, vol. 108, no. 4, 1995. doi: 10.1016/0016-5085(95)90192-2.
6. Kolida S. and Gibson G. R. Synbiotics in health and disease. Annu Rev Food Sci Technol, vol. 2, 2011. doi: 10.1146/annurev-food-022510-133739.
7. Mortensen P. B., Clausen M. R. Short-chain fatty acids in the human colon: Relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology, Supplement, vol. 31, no. 216. 1996. doi: 10.3109/00365529609094568.
8. Hague A., Singh B., Paraskeva C. Butyrate acts as a survival factor for colonic epithelial cells: Further fuel for the in vivo versus in vitro debate. Gastroenterology, vol. 112, no. 3, 1997, doi: 10.1053/gast.1997.v112.agast971036.
9. Sakata T. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition, vol. 58, no. 1, 1987, doi: 10.1079/bjn19870073.
10. Shimotoyodome A., Meguro S., Hase T., et al. Decreased colonic mucus in rats with loperamide-induced constipation. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, vol. 126, no. 2, 2000, doi: 10.1016/S1095-6433(00)00194-X.
11. Martín R., Miquel S., Benevides L., et al., Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: A step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol, vol. 8, no. JUN, 2017, doi: 10.3389/fmicb.2017.01226.
12. World Gastroenterology Organisation Global Guidelines Probiotics and prebiotics, 2017.
13. Bircher L., Geirnaert A., Hammes F., et al. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb Biotechnol, vol. 11, no. 4, 2018, doi: 10.1111/1751-7915.13265.
14. Malik K. A. Cryopreservation of bacteria with special reference to anaerobes. World J Microbiol Biotechnol, vol. 7, no. 6, 1991, doi: 10.1007/BF00452850.
15. Meryman H. T. Cryopreservation of living cells: Principles and practice. Transfusion, vol. 47, no. 5. 2007. doi: 10.1111/j.1537-2995.2007.01212.x.
16. Broeckx G., Vandenheuvel D., Claes I. J. J., et al. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. International Journal of Pharmaceutics, vol. 505, no. 1–2. 2016. doi: 10.1016/j.ijpharm.2016.04.002.
17. Heylen K., Hoefman S., Vekeman B., et al. Safeguarding bacterial resources promotes biotechnological innovation. Applied Microbiology and Biotechnology, vol. 94, no. 3. 2012. doi: 10.1007/s00253-011-3797-y.
18. Bellali S., Bou Khalil J., Fontanini A., et al. A new protectant medium preserving bacterial viability after freeze drying. Microbiol Res, vol. 236, 2020, doi: 10.1016/j.micres.2020.126454.
19. de Valdez G. F., de Giori G. S., de Ruiz Holgado A. P., et al. Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying. Cryobiology, vol. 20, no. 5, 1983, doi: 10.1016/0011-2240(83)90044-5.
20. Khan M. T., Duncan S. H., Stams A. J. M., et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME Journal, vol. 6, no. 8, 2012, doi: 10.1038/ismej.2012.5.
21. Neyrinck A.M., Van Hée V.F., Piront N. et al. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr Diabetes, vol. 2, no. JANUARY, 2012, doi: 10.1038/nutd.2011.24.
22. Neyrinck A.M., Possemiers S., Druart C., et al. Prebiotic effects of wheat Arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in dietinduced obese mice. PLoS One, vol. 6, no. 6, 2011, doi: 10.1371/journal.pone.0020944.
23. Gänzle M. G. and Follador R. Metabolism of oligosaccharides and starch in lactobacilli: A review. Frontiers in Microbiology, vol. 3, no. SEP. 2012. doi: 10.3389/fmicb.2012.00340.
24. Baumann D. Preservation of lactic cultures., 1964.
25. Fowler A. and Toner M. Cryo-injury and biopreservation.. Annals of the New York Academy of Sciences, vol. 1066. 2006. doi: 10.1196/annals.1363.010.
26. Leslie S. B., Israeli E., Lighthart B., et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during. Appl Environ Microbiol, vol. 61, no. 10, 1995, doi: 10.1128/aem.61.10.3592-3597.1995.
27. Crowe J. H., Carpenter J. F., Crowe L. M. The role of vitrification in anhydrobiosis. Annual Review of Physiology, vol. 60. 1998. doi: 10.1146/annurev.physiol.60.1.73.
28. Bembeeva B.О., Isaeva E.L., Muravieva V.V., et al. Study of intestinal microbiota by culturomics. Bacteriology. 2024; 9(1): 58–62. (In Russ.). DOI: 10.20953/2500-1027-2024-1-58-62 29. https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium110.pdf
Review
For citations:
Bembeeva B.O., Isaeva E.L., Muravieva V.V., Zhigalova K.N., Nechaeva O.V., Bazukheyr D.Kh., Priputnevich T.V. Optimising Conditions for the Preservation of Extremely Oxygen Sensitive Obligate Anaerobes of the Gut Microbiota as Candidates for Probiotic Strains. Epidemiology and Vaccinal Prevention. 2024;23(6):54-60. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-6-54-60