Optimization of a Method for Detecting Single copies of Hepatitis B Virus DNA using CRISPR/Cas systems
https://doi.org/10.31631/2073-3046-2024-23-6-114-128
Abstract
Relevance. Hepatitis B virus (HBV) is the etiologic agent of acute and chronic hepatitis B in humans. WHO recommends the use of sensitive laboratory assays based on nucleic acid amplification methods to detect HBV DNA. A method for detecting single copies of hepatitis B virus DNA using CRISPR/Cas systems was previously developed for ultrasensitive detection of HBV DNA.
Aims. The aim of present study was to optimize the method for detecting single copies of hepatitis B virus DNA using CRISPR/Cas systems.
Materials and methods. To obtain amplified fragments of the hepatitis B virus genome, 22 oligonucleotides were developed. The preliminary amplification stage was performed by the RPA method using the developed oligonucleotides. The assembly of CRISPR/ Cas ribonucleoprotein complexes specific for fragments of the hepatitis B virus genome was carried out using synthetic guide RNA (oligoribonucleotides). The detection stage was performed in HOLMES 1.
Results and discussion. We maintained the sensitivity of the optimized method at the level of the original one (detection of single copies of hepatitis B virus DNA), when optimizing the method for detecting hepatitis B virus DNA. In addition, we reduced the time required for the analysis. Thus, the time required to detect single copies (6 copies per reaction) of hepatitis B virus DNA using the original method is 83 minutes, while for the optimized method it is 32 minutes.
Conclusions. The optimized method for detecting single copies of hepatitis B virus DNA using CRISPR/Cas systems described in the article can be used in the future to develop new diagnostic kits, including point-of-care kits and/or kits to use in the field.
About the Authors
M. A. TyumentsevaRussian Federation
Marina A. Tyumentseva – Cand. Sci. (Biol.), Head of the Laboratory of Genome Editing of the OMD&E,
Moscow
+7 (495) 974-96-46 (ext. 2627)
A. I. Tyumentsev
Russian Federation
Aleksandr I. Tyumentsev – Cand. Sci. (Biol.), Head of the Laboratory of Experimental Pharmacology of the OMD&E
Moscow
+7 (495) 974-96-46 (ext. 2627)
A. N. Prelovskaya
Russian Federation
Anna N. Prelovskaya – researcher at the Laboratory of Genome Editing of the OMD&E
Moscow
+7 (495) 974-96-46 (ext. 2627)
V. G. Akimkin
Russian Federation
Vasily G. Akimkin – Academician of the Russian Academy of Sciences, Dr. Sci. (Med.), Professor, Director
Moscow
+7 (495) 974-96-46 (ext. 2627)
References
1. Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection. Nat Rev Dis Primers. 2018;4(1):18035. doi:10.1038/nrdp.2018.35
2. Gepatit B. Who.int. Accessed November 20, 2024. https://www.who.int/ru/news-room/fact-sheets/detail/hepatitis-b
3. Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov. 2019;18(11):827–844. doi:10.1038/s41573-019-0037-0
4. Huang DQ, Tran A, Yeh ML, et al. Antiviral therapy substantially reduces HCC risk in patients with chronic hepatitis B infection in the indeterminate phase. Hepatology. 2023;78(5):1558–1568. doi:10.1097/HEP.0000000000000459
5. Guidelines on Hepatitis B and C testing. Who.int. Accessed November 20, 2024. https://apps.who.int/iris/bitstream/handle/10665/254621/9789241549981-eng.pdf;sequence=1
6. Gu S, Tao Y, Fan C, et al. Impact of hepatitis B virus point-of-care DNA viral load testing compared with laboratory-based standard-of-care approaches on uptake of HBV viral load testing, treatment, and turnaround times: A systematic review and meta-analysis. Open Forum Infect Dis. 2024;11(9):ofae483. doi:10.1093/ofid/ofae483
7. Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018;360(6387):436–439. doi:10.1126/science.aar6245
8. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442. doi:10.1126/science.aam9321
9. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–444. doi:10.1126/science.aaq0179
10. Myhrvold C, Freije CA, Gootenberg JS, et al. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360(6387):444–448. doi:10.1126/science.aas8836
11. Zhou R, Li Y, Dong T, Tang Y, Li F. A sequence-specific plasmonic loop-mediated isothermal amplification assay with orthogonal color readouts enabled by CRISPR Cas12a. Chem Commun (Camb). 2020;56(24):3536–3538. doi:10.1039/d0cc00397b
12. Ding R, Long J, Yuan M, et al. CRISPR/Cas12-based ultra-sensitive and specific point-of-care detection of HBV. Int J Mol Sci. 2021;22(9):4842. doi:10.3390/ijms22094842
13. Chen X, Tan Y, Wang S, et al. A CRISPR-Cas12b-based platform for ultrasensitive, rapid, and highly specific detection of hepatitis B virus genotypes B and C in clinical application. Front Bioeng Biotechnol. 2021;9:743322. doi:10.3389/fbioe.2021.743322
14. Lv H, Wang J, Zhang J, et al. Definition of CRISPR Cas12a T rans-cleavage units to facilitate CRISPR diagnostics. Front Microbiol. 2021;12:766464. doi:10.3389/fmicb.2021.766464
15. Tiumentsev AI, Tiumentseva MA, Prelovskaia AN, Akimkin VG. Sistema CRISPR-Cas12 dlya vy`yavleniya DNK virusa gepatita B v ul`tranizkix koncentraciyax. Patent RUS №2782700. 01.11.2022. Byul. № 31. Available at: https://new.fips. ru/ofpstorage/BULLETIN/IZPM/2022/11/10/INDEX_RU.HTM. Accessed: 20 Nov 2024 (In Russ).
16. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):e204. doi:10.1371/journal.pbio.0040204
17. Anders C, Jinek M. In vitro enzymology of Cas9. Methods Enzymol. 2014;546:1–20. doi:10.1016/B978-0-12-801185-0.00001-5
18. Akimkin VG, Tiumentsev AI, Tiumentseva MA. Crispr/cas system for detecting proviral hiv dna. World Patent WO2021118409A1. 2021 Jun 17. Available at: https://patents.google.com/patent/WO2021118409A1/en?oq=WO2021118409A1. Accessed: 20 Nov 2024 (In Russ).
19. Akimkin VG, Tiumentsev AI, Tiumentseva MA. Crispr/cas system for detecting an antibiotic resistance gene. World Patent WO2021211012A1. 2021 Oct 21. Available at: https://patents.google.com/patent/WO2021211012A1/en?oq=WO2021211012A1. Accessed: 20 Nov 2024. (In Russ).
20. Tiumentsev AI, Tiumentseva MA, Prelovskaia AN, Akimkin VG. Crispr-cas14 system for detecting Sars-cov-2 virus rna at ultra-low concentrations. World Patent WO2023055255A1. 2023 Apr 6. Available at: https://patents.google.com/patent/WO2023055255A1/en?oq=WO2023055255A1. Accessed: 20 Nov 2024. (In Russ).
21. Cohen SS. A Guide to Polyamines. Oxford University Press; 1997.
22. Krasnow MA, Cozzarelli NR. Catenation of DNA rings by topoisomerases. Mechanism of control by spermidine. J Biol Chem. 1982;257(5):2687–2693. doi:10.1016/s0021-9258(18)34978-0
23. Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. J Biol Chem. 2019;294(29):11311–11322. doi:10.1074/jbc.RA119.007619
24. Akabayov B, Akabayov SR, Lee SJ, Wagner G, Richardson CC. Impact of macromolecular crowding on DNA replication. Nat Commun. 2013;4(1):1615. doi:10.1038/ncomms2620
25. Minton AP. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem. 2001;276(14):10577–10580. doi:10.1074/jbc.R100005200
26. Zimmerman SB, Minton AP. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu Rev Biophys Biomol Struct. 1993;22(1):27–65. doi:10.1146/annurev.bb.22.060193.000331
27. Wang Q, Liang KC, Czader A, Waxham MN, Cheung MS. The effect of macromolecular crowding, ionic strength and calcium binding on calmodulin dynamics. PLoS Comput Biol. 2011;7(7):e1002114. doi:10.1371/journal.pcbi.1002114
28. van den Berg B, Wain R, Dobson CM, Ellis RJ. Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J. 2000;19(15):3870–3875. doi:10.1093/emboj/19.15.3870
29. Sikorav JL, Church GM. Complementary recognition in condensed DNA: accelerated DNA renaturation. J Mol Biol. 1991;222(4):1085–1108. doi:10.1016/0022-2836(91)90595-w
30. Akimkin VG, Tiumentsev AI, Tiumentseva MA, Shagin DA. Method for producing a preparation of highly-purified recombinant cas nuclease. World Patent WO2020197436A1. 2020 Oct 1. Available at: https://patents.google.com/patent/WO2020197436A1/en?oq=WO2020197436A1. Accessed: 20 Nov 2024. (In Russ).
31. Qiu M, Zhou XM, Liu L. Improved strategies for CRISPR-Cas12-based nucleic acids detection. J Anal Test. 2022;6(1):44–52. doi:10.1007/s41664-022-00212-4
32. Salehian M, Emamzadeh R, Nazari M, Oliayi M. Glycine as a stabilizing osmolyte for Renilla luciferase: A kinetic and molecular dynamics analysis. Biocatal Biotransformation. Published online 2024:1- 10. doi:10.1080/10242422.2024.2404451
Review
For citations:
Tyumentseva M.A., Tyumentsev A.I., Prelovskaya A.N., Akimkin V.G. Optimization of a Method for Detecting Single copies of Hepatitis B Virus DNA using CRISPR/Cas systems. Epidemiology and Vaccinal Prevention. 2024;23(6):114-128. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-6-114-128