Evaluation of the Ratio of Spot Tests and Plaque-Forming Activity Tests of Bacteriophages of Prevalent Pathogens
https://doi.org/10.31631/2073-3046-2024-23-6-129-136
Abstract
Relevance. Obtaining clean lysis spots, with tolerable presence of individual colonies of secondary growth, in spot tests is a criterion for assessing the effectiveness of therapeutic bacteriophages. At the same time, a number of mechanisms are known by which phage lysis of bacteria on lawns occurs without being accompanied by virus replication.
Aim. To assess the ratio of spot test results and tests based on the detection of negative bacteriophage colonies.
Conclusion. Data on 43 bacteriophages extracted from 21 articles were analyzed. Within the studied sample, the observation of clean lysis zones in 94% of cases corresponded to successful virus replication. For a number of Escherichia coli bacteriophages, a greater number of spot tests of the "++++" category were detected compared to the number of strains supporting virus replication, which, within the framework of assessing the lytic activity of a therapeutic bacteriophage, can be characterized as false positive spot test results. In general, the observation of clear lysis spots on the spot test in most cases indicates bacteriophage replication, which allows us to consider the spot test method as indicative, but requiring subsequent validation by more complex methods characterizing the efficiency of phage replication.
About the Authors
I. M. PchelinRussian Federation
Ivan M. Pchelin – Cand. Sci. (Biol.), Researcher at the Laboratory of Functional Genomics and Proteomics of Microorganisms
Saint Petersburg
D. V. Azarov
Russian Federation
Daniil V. Azarov – Cand. Sci. (Med.), Senior Researcher at the Laboratory of Functional Genomics and Proteomics of Microorganisms; Teaching Assistant at the Department of Epidemiology, Parasitology and Disinfectology
Saint Petersburg
V. A. Dedik
Russian Federation
Varvara A. Dedik – student
Saint Petersburg
D. A. Kushnirenko
Russian Federation
Daria A. Kushnirenko – Laboratory Assistant at the Laboratory of Innovative Methods of Microbiological Monitoring, World-Class Research Center “Center for Personalized Medicine”
Saint Petersburg
B. I. Aslanov
Russian Federation
Batyrbek I. Aslanov – Dr. Sci. (Med.), Professor, Head of the Department of Epidemiology, Parasitology and Disinfectology
Saint Petersburg
A. E. Goncharov
Russian Federation
Artemy E. Goncharov – Dr. Sci. (Med.), Head of the Laboratory of Innovative Methods of Microbiological Monitoring; Professor at the Department of Epidemiology, Parasitology and Disinfectology
Saint Petersburg
D. A. Lioznov
Russian Federation
Dmitry A. Lioznov – Dr. Sci. (Med.), Professor, Head; Head of Department of Infectious Diseases and Epidemiology
Saint Petersburg
References
1. Pokrovskaya MP, Kaganova LS, Morozenko MA, et al. Bacteriophage treatment of wounds. Moscow: State publishing house of medical literature «Medgiz»: 1941. 51 p. (in Russ.)
2. Letarov AV. History of early bacteriophage research and emergence of key concepts in virology. Biochemistry. 2020;85(9):1093–1112 (in Russ.) DOI: 10.31857/S0320972520090031
3. Gorshenin A.V. Participation of microbiologists Z.V. Ermolyeva and L.M. Yakobson in a scientific discussion about the fate of the production of Soviet cholera bacteriophages in 1967. Samara Journal of Science. 2021;10(4):201–207 (in Russ.) DOI: 10.17816/snv2021104211
4. Turner PE, Azeredo J, Buurman ET, et al. Addressing the research and development gaps in modern phage therapy. Phage. 2024;5(1):30–39. DOI: 10.3389/fphar.2021.699054
5. Hesse S, Adhya S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage? Annu Rev Microbiol. 2019;73:155–174. DOI: 10.1146/annurev-micro-090817-062535
6. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res. 2005;36(6):697–705. DOI: 10.1016/j.arcmed.2005.06.009
7. Kinch MS, Kraft Z, Schwartz T. Antibiotic development: lessons from the past and future opportunities. Pharm Res. 2024;41(5):839–848. DOI: 10.1007/s11095-024-03694-2
8. O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance. 2016. 84 p.
9. GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet. 2024;404(10459):1199–1226. DOI: 10.1016/ S0140-6736(24)01867-1
10. Nilsson AS. Pharmacological limitations of phage therapy. Ups J Med Sci. 2019;124(4):218–227. DOI: 10.1080/03009734.2019.1688433
11. Valente L, Prazak J, Que YA, et al. Progress and pitfalls of bacteriophage therapy in critical care: a concise definitive review. Crit Care Explor. 2021;3(3):e0351. DOI: 10.1097/CCE.0000000000000351
12. Pirnay JP, Verbeken G. Magistral phage preparations: is this the model for everyone? Clin Infect Dis. 2023;77(Suppl 5):S360–S369. DOI: 10.1093/cid/ciad481
13. Yerushalmy O, Braunstein R, Alkalay-Oren S, et al. Towards standardization of phage susceptibility testing: the Israeli phage therapy center «clinical phage microbiology»-a pipeline proposal. Clin Infect Dis. 2023;77(Suppl 5):S337–S351. DOI: 10.1093/cid/ciad514
14. Fedorov E, Samokhin A, Kozlova Y, et al. Short-term outcomes of phage-antibiotic combination treatment in adult patients with periprosthetic hip joint infection. Viruses. 2023;15(2):499. DOI: 10.3390/v15020499
15. Aslanov BI, Zueva LP, Punchenko OE, et al. Rational use of bacteriophages in therapeutic and antiepidemic practice. Methodological guidelines. Moscow, 2022 (in Russ.)
16. Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48. DOI: 10.1016/S0065-2164(10)70007-1
17. Pchelin IM, Smolensky AV, Azarov DV, et al. Lytic spectra of tailed bacteriophages: a systematic review and meta-analysis. Viruses. 2024;16(12):1879. DOI: 10.3390/v16121879
18. Pereira C, Moreirinha C, Lewicka M, et al. Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res. 2017;227:171–182. DOI: 10.1016/j.virusres.2016.09.019
19. Barros J, Melo LDR, Poeta P, et al. Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int J Antimicrob Agents. 2019;54(3):329–337. DOI: 10.1016/j.ijantimicag.2019.06.007
20. Pacios O, Fernández-García L, Bleriot I, et al. Phenotypic and genomic comparison of Klebsiella pneumoniae lytic phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses. 2021;14(1):6. DOI: 10.3390/v14010006
21. Pertics BZ, Kovács T, Schneider G. Characterization of a lytic bacteriophage and demonstration of its combined lytic effect with a K2 depolymerase on the hypervirulent Klebsiella pneumoniae strain 52145. Microorganisms. 2023;11(3):669. DOI: 10.3390/microorganisms11030669
22. Shahin K, Bouzari M, Wang R, et al. Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Int J Food Microbiol. 2019;305:108252. DOI: 10.1016/j.ijfoodmicro.2019.108252
23. Pertics BZ, Cox A, Nyúl A, et al. Isolation and characterization of a novel lytic bacteriophage against the K2 capsule-expressing hypervirulent Klebsiella pneumoniae strain 52145, and identification of its functional depolymerase. Microorganisms. 2021;9(3):650. DOI: 10.3390/microorganisms9030650
24. González-Gómez JP, López-Cuevas O, Castro-Del Campo N, et al. Genomic and biological characterization of the novel phages vB_VpaP_AL-1 and vB_VpaS_AL-2 infecting Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2022;312:198719. DOI: 10.1016/j.virusres.2022.198719
25. Orozco-Ochoa AK, González-Gómez JP, Castro-Del Campo N, et al. Characterization and genome analysis of six novel Vibrio parahaemolyticus phages associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2023;323:198973. DOI: 10.1016/j.virusres.2022.198973
26. Filik K, Szermer-Olearnik B, Wernecki M, et al. The podovirus 80-18 targets the pathogenic American biotype 1B strains of Yersinia enterocolitica. Front Microbiol. 2020;11:1356. DOI: 10.3389/fmicb.2020.01356
27. Essoh C, Vernadet JP, Vergnaud G, et al. Characterization of sixteen Achromobacter xylosoxidans phages from Abidjan, Côte d’Ivoire, isolated on a single clinical strain. Arch Virol. 2020;165(3):725–730. DOI: 10.1007/s00705-019-04511-7
28. Xu J, Zhang R, Yu X, et al. Molecular characteristics of novel phage vB_ShiP-A7 infecting multidrug-resistant Shigella flexneri and Escherichia coli, and its bactericidal effect in vitro and in vivo. Front Microbiol. 2021;12:698962. DOI: 10.3389/fmicb.2021.698962
29. Imklin N, Nasanit R. Characterization of Salmonella bacteriophages and their potential use in dishwashing materials. J Appl Microbiol. 2020;129(2):266–277. DOI: 10.1111/jam.14617
30. Guo M, Gao Y, Xue Y, et al. Bacteriophage cocktails protect dairy cows against mastitis caused by drug resistant Escherichia coli infection. Front Cell Infect Microbiol. 2021;11:690377. DOI: 10.3389/fcimb.2021.690377
31. Liao YT, Sun X, Quintela IA, et al. Discovery of shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages from non-fecal composts using genomic characterization. Front Microbiol. 2019;10:627. DOI: 10.3389/fmicb.2019.00627
32. Fong K, LaBossiere B, Switt AIM, et al. Characterization of four novel bacteriophages isolated from British Columbia for control of non-typhoidal Salmonella in vitro and on sprouting alfalfa seeds. Front Microbiol. 2017;8:2193. DOI: 10.3389/fmicb.2017.02193
33. Ding Y, Huang C, Zhu W, et al. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res. 2023;326:199054. DOI: 10.1016/j.virusres.2023.199054
34. Turner D, Hezwani M, Nelson S, et al. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J Gen Virol. 2012;93(Pt 9):2046–2056. DOI: 10.1099/vir.0.043331-0
35. Harada LK, Silva EC, Rossi FP, et al. Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Future Microbiol. 2022:111–141. DOI: 10.2217/fmb-2021-0027
36. de Melo ACC, da Mata Gomes A, Melo FL, et al. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol. 2019;19(1):134. DOI: 10.1186/s12866-019-1481-z
37. Kauppinen A, Siponen S, Pitkänen T, et al. Phage biocontrol of Pseudomonas aeruginosa in water. Viruses. 2021;13(5):928. DOI: 10.3390/v13050928
38. Ding T, Sun H, Pan Q, et al. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020;286:198080. DOI: 10.1016/j.virusres.2020.198080
39. Abedon ST. Information Phage Therapy Research Should Report. Pharmaceuticals (Basel). 2017;10(2):43. DOI: 10.3390/ph10020043
40. Ooi ML, Drilling AJ, Morales S, et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg. 2019;145(8):723–729. DOI: 10.1001/jamaoto.2019.1191
41. Wright A, Hawkins CH, Anggård EE, et al. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349–57. DOI: 10.1111/j.1749-4486.2009.01973.x
Review
For citations:
Pchelin I.M., Azarov D.V., Dedik V.A., Kushnirenko D.A., Aslanov B.I., Goncharov A.E., Lioznov D.A. Evaluation of the Ratio of Spot Tests and Plaque-Forming Activity Tests of Bacteriophages of Prevalent Pathogens. Epidemiology and Vaccinal Prevention. 2024;23(6):129-136. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-6-129-136