Peptide and m-RNA Vaccines: Peculiarities of Immunogenicity and Protective Effect
https://doi.org/10.31631/2073-3046-2024-23-6-137-146
Abstract
Relevance. Pandemic pathogen variants formation is a pressing issue of modern healthcare system thus classic approaches of preventive measures against infectious diseases require revision including implementation of effective, safe, universal and rapid methods of vaccine production.
Aim. To conduct analysis of scientific literature concerning peculiarities of m-RNA and peptide vaccines. Search of publications was carried out in PubMed, Google Scholar and e-library databases.
Conclusions. In addition to obvious advantages both vaccine platforms have disadvantages. m-RNA vaccines are thermally unstable and need to be stored and transported at temperature not exceeding minus 80 °C which significantly reduces their availability in countries with low income. m-RNA vaccine platform was chosen to manufacture vaccines against SARS-CoV-2 in Western countries (USA and Germany) during the COVID-19 pandemic despite the mentioned disadvantage. Most perspective mRNA vaccine prototypes vaccine were designed to combat influenza, respiratory syncytial virus, rabies, malaria, HIV, Ebola virus, Zika virus and cytomegalovirus. Peptide vaccines are undemanding to external factors such as temperature of storage and transportation. On the other hand, they need to be more immunogenic which is achieved by adding various adjuvants. They are also challenging to manufacture due complexity of quaternary structure of protein epitopes of antigens. To date, foreign peptide vaccines against influenza, HIV infection, hepatitis C, tuberculosis, malaria, and leishmaniasis have passed the first and second stages of clinical trials. Both mRNA and peptide vaccines undergo rapid degradation in human body, which prompts scientists to develop new molecular methods for delivering the vaccine matrix to target cells
About the Authors
T. F. StepanovaRussian Federation
Tatyana F. Stepanova – Dr. Sci. (Med.), professor, chief research associate
Tumen
+7 (3452) 28-99-94
O. E. Trotsenko
Russian Federation
Olga E. Trotsenko – Dr. Sci. (Med.), director,
Khabarovsk
+7 (4212) 32-52-28
I. V. Bakshtankvskaya
Russian Federation
Irina V. Bakshtanovskaya – Cand. Sci. (Biol.), scientific secretary
Tyumen
+7 (3452) 28-99-94
E. A. Bazykina
Russian Federation
Elena A. Bazykina – junior research associate of laboratory of viral hepatitis and AIDS epidemiology and prevention
Khabarovsk
+7 (4212) 46-18-55
K. B. Stepanova
Russian Federation
Ksenia B. Stepanova – Cand. Sci. (Med.), interim director
Tyumen
+7 (3452) 28-99-94
References
1. Rauch S, Jasny E, Schmidt KE, Petsch B. New Vaccine Technologies to Combat Outbreak Situations. Front Immunol. 2018;9:1963. doi: 10.3389/fimmu.2018.01963.
2. Pronker ES, Weenen TC, Commandeur H, et al. Risk in vaccine research and development quantified. PLoS ONE.2013;8:e57755. doi:10.1371/journal.pone.0057755.
3. Eroglu B, Nuwarda RF, Ramzan I, Kayser V. A Narrative Review of COVID-19 Vaccines. Vaccines (Basel). 2021;10(1):62. doi:10.3390/vaccines10010062.
4. Di Natale C, La Manna S, De Benedictis I, et al. Perspectives in Peptide-Based Vaccination Strategies for Syndrome Coronavirus 2 Pandemic. Front Pharmacol. 2020;11:578382. doi:10.3389/fphar.2020.578382.
5. Krut’ VG, Chuvpilo SA, Astrakhantseva IV, et al. Will Peptides Help to Stop COVID-19?. Biochemistry (Mosc).2022;87(7):590–604. doi:10.1134/S0006297922070021.
6. Al-Fattah Yahaya AA, Khalid K, Lim HX, Poh CL. Development of Next Generation Vaccines against SARS-CoV-2 and Variants of Concern. Viruses. 2023;15(3):624. doi:10.3390/v15030624.
7. Skwarczynski M, Toth I. Peptide-based synthetic vaccines. Chem. Sci. 2016;7:842–854. doi: 10.1039/C5SC03892H.
8. Тuhvatulin AI, Tuhvatulina NM, Dzharullaeva ASh, et al. A method for testing immunogenicity of vaccine antigens to obtain highly effective vaccines against dangerous infections [Sposob proverki immunogennosti vakcinnyh antigenov dlja poluchenija vysokojeffektivnyh vakcin protiv opasnyh infekcij]. Patent RF № 2018140539. 18.05.2020. Available at: https://patenton.ru/patent/RU2722648C2. Accessed: Octover 09,2024 (in Russ.).
9. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines. A new era in vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. doi: 10.1038/nrd.2017.243.
10. Thomas SJ, Moreira ED Jr., Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N. Engl. J. Med.2021;385:1761–73. doi: 10.1056/NEJMoa2110345.
11. Rodríguez-Gascón A, del Pozo-Rodríguez A, Solinís MÁ. Development of nucleic acid vaccines: Use of self-amplifying RNA in lipid nanoparticles. Int. J. Nanomed. 2014;9:1833–1843. doi: 10.2147/IJN.S39810.
12. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol.2012;9:1319–30. 10.4161/rna.22269.
13. Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods Mol Biol.2017;1499:109–21. 10.1007/978-1-4939-6481-9_6.
14. Feldman RA, Fuhr R, Smolenov I, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine.2019;37(25):3326–3334. doi:10.1016/j.vaccine.2019.04.074.
15. Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol.2020.65:14–20. doi: 10.1016/j.coi.2020.01.008.
16. Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine.2021;39:2190–200. doi: 10.1016/j.vaccine.2021.03.038. 17. 17. Yang L, Tang L, Zhang M, Liu C. Recent advances in the molecular design and delivery technology of mRNA for vaccination against infectious diseases. Front Immunol.2022;13. doi: 10.3389/fimmu.2022.896958.
17. Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discovery.2021;20:817–38. doi: 10.1038/s41573-021-00283-5.
18. Andrianov AK, Fuerst TR. Immunopotentiating and Delivery Systems for HCV Vaccines. Viruses.2021;13:981. doi: 10.3390/v13060981.
19. Ding Y., Li Z., Jaklenec A., Hu Q. Vaccine Delivery Systems toward Lymph Nodes. Adv. Drug Deliv. Rev.2021;179:113914. doi: 10.1016/j.addr.2021.113914.
20. de Moura IA, Silva AJD, de Macêdo LS, et al. Enhancing the Effect of Nucleic Acid Vaccines in the Treatment of HPV-Related Cancers: An Overview of Delivery Systems. Pathogens. 2022;11(12):1444. doi:10.3390/pathogens11121444.
21. Abbasi S., Uchida S. Multifunctional Immunoadjuvants for Use in Minimalist Nucleic Acid Vaccines. Pharmaceutics.2021;13:644. doi: 10.3390/pharmaceutics13050644.
22. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics–developing a new class of drugs. Nat Rev Drug Discovery.2014;13:759–80. doi: 10.1038/nrd4278.
23. Freyn AW, da Silva JR, Rosado VC, et al. A multi-targeting, nucleoside-modified mRNA influenza virus vaccine provides broad protection in mice. Mol Ther.2020;28:1569–84. doi: 10.1016/j.ymthe.2020.04.018.
24. Chivukula S, Plitnik T, Tibbitts T, et al. Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza. NPJ Vaccines.2021;6:153. doi: 10.1038/s41541-021-00420-6.
25. McMahon M, O’Dell G, Tan J, et al. Assessment of a quadrivalent nucleoside-modified mRNA vaccine that protects against group 2 influenza viruses. Proc Natl Acad Sci.2022;119. doi: 10.1073/pnas.2206333119.
26. Arevalo CP, Bolton MJ, Le Sage V, et al. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Sci (1979).2022;378:899–904. doi: 10.1126/science.abm0271.
27. Pardi N, Carreño JM, O’Dell G, et al. Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza b viruses. Nat Commun. 2022;13:4677. doi: 10.1038/s41467-022-32149-8.
28. Zhuang X, Qi Y, Wang M, et al. mRNA vaccines encoding the HA protein of influenza a H1N1 virus delivered by cationic lipid nanoparticles induce protective immune responses in mice. Vaccines (Basel).2020;8(1):123. doi:10.3390/vaccines8010123.
29. Espeseth AS, Cejas PJ, Citron MP, et al. Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus f protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines.2020;5:16. doi: 10.1038/s41541-020-0163-z.
30. Li J, Liu Q, Liu J, et al. An mRNA-based rabies vaccine induces strong protective immune responses in mice and dogs. Virol J.2022;19:184. doi: 10.1186/s12985-022-01919-7.
31. Schnee M, Vogel AB, Voss D, et al. An mRNA vaccine encoding rabies virus glycoprotein induces protection against lethal infection in mice and correlates of protection in adult and newborn pigs. PloS Negl Trop Dis.2016;10:e0004746. doi: 10.1371/journal.pntd.0004746.
32. Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front. Immunol.2023;14:1172691. doi: 10.3389/fimmu.2023.1172691.
33. Hayashi CTH, Cao Y, Clark LC, et al. mRNA-LNP expressing PfCSP and Pfs25 vaccine candidates targeting infection and transmission of plasmodium falciparum. NPJ Vaccines. 2022;7:155. doi: 10.1038/s41541-022-00577-8.
34. Pardi N, LaBranche CC, Ferrari G, et al. Characterization of HIV-1 nucleoside-modified mRNA vaccines in rabbits and rhesus macaques. Mol Ther Nucleic Acids.2019;15:36–47. doi: 10.1016/j.omtn.2019.03.003.
35. Zhang P, Narayanan E, Liu Q, et al. A multiclade env–gag VLP mRNA vaccine elicits tier-2 HIV-1-neutralizing antibodies and reduces the risk of heterologous SHIV infection in macaques. Nat Med.2021;27:2234–45. doi: 10.1038/s41591-021-01574-5.
36. Valentin A, Bergamaschi C, Rosati M, et al. Comparative immunogenicity of an mRNA/LNP and a DNA vaccine targeting HIV gag conserved elements in macaques. Front Immunol.2022;13. doi: 10.3389/fimmu.2022.945706.
37. Chahal JS, Khan OF, Cooper CL, et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and toxoplasma gondii challenges with a single dose. Proc Natl Acad Sci.2016;113:E4133–42. doi: 10.1073/pnas.1600299113.
38. Pardi N, Hogan M J, Pelc RS, et al.. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature.2017;543:248–51. 10.1038/nature21428.
39. John S, Yuzhakov O, Woods A, et al. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine.2018;36:1689–99. doi: 10.1016/j.vaccine.2018.01.029.
40. Moderna Announces Additional Positive Phase 1 Data from Cytomegalovirus (CMV) Vaccine (mRNA-1647) and First Participant Dosed in Phase 2 Study (2020). Available at: https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Additional-Positive-Phase-1-Data-from-Cytomegalovirus-CMV-Vaccine-mRNA-1647-and-First-Participant-Dosed-in-Phase-2-Study/default.aspx (accessed 10 April 2024).
41. Richner JM, Himansu S, Dowd KA, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. Cell.2017;168(6):1114–1125.e10. doi:10.1016/j.cell.2017.02.017.
42. Jacobson, JM, Routy J-P, Welles S, et al. Dendritic cell immunotherapy for HIV-1 infection using autologous HIV-1 RNA: a randomized, double-blind, placebo-controlled clinical trial. J. Acquir. Immune Def. Syndr.2016;72, 31–38. doi: 10.1097/QAI.0000000000000926.
43. Gandhi RT, Kwon DS, Macklin EA, et al. Immunization of HIV-1-Infected Persons With Autologous Dendritic Cells Transfected With mRNA Encoding HIV-1 Gag and Nef: Results of a Randomized, Placebo-Controlled Clinical Trial. J Acquir Immune Defic Syndr.2016;71(3):246–253. doi:10.1097/QAI.0000000000000852.
44. Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017;390(10101):1511–1520. doi:10.1016/S0140-6736(17)31665-3.
45. Aldrich C , Leroux-Roels I , Huang KB, et al. Proof-of-concept of a low-dose unmodified mRNA-based rabies vaccine formulated with lipid nanoparticles in human volunteers: A phase 1 trial. Vaccine.2021; 39(8):1310–1318. doi: 10.1016/j.vaccine.2020.12.070.
46. Bahl K, Senn JJ, Yuzhakov O, et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther.2017;25(6):1316–1327. doi: 10.1016/j.ymthe.2017.03.035.
47. Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum. Vaccines Immunother.2016);12(3):806–828. doi: 10.1080/21645515.2015.1102804.
48. Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expet Rev. Vaccine.2007;6(5):797–808. 10.1586/14760584.6.5.797.
49. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016; doi: 3:237–261. 10.1146/annurev-virology-110615-042301.
50. Vaccines Licensed for Use in the United States. Available at: https://www.fda.gov/vaccines-blood-biologics/vaccines/vaccines-licensed-use-united-states (accessed 10 April 2024).
51. Liu Y, Wang X, Zhou J, et al. Development of PDA Nanoparticles for H9N2 Avian Influenza BPP-V/BP-IV Epitope Peptide Vaccines: Immunogenicity and Delivery Efficiency Improvement. Front Immunol. 2021;12:693972. doi: 10.3389/fimmu.2021.693972.
52. Coppola M, van den Eeden SJ, Wilson L, et al. Synthetic Long Peptide Derived from Mycobacterium tuberculosis Latency Antigen Rv1733c Protects against Tuberculosis. Clin Vaccine Immunol. 2015;22(9):1060–1069. doi:10.1128/CVI.00271-15.
53. Gowthamanо, The Journal of Infectious Diseases.2011;204(9):1328–1338. doi:10.1093/infdis/jir548.
54. Nardin E. The past decade in malaria synthetic peptide vaccine clinical trials. Hum Vaccin.2010;6(1):27–38. doi:10.4161/hv.6.1.9601.
55. Holz LE, Cоeaaz8035. doi: 10.1126/sciimmunol.aaz8035.
56. Martins VT, Duarte MC, Chávez-Fumagalli MA, et al. A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasit Vectors. 2015;11:8:363. doi: 10.1186/s13071-015-0964-5.
57. Dawood RM, Moustafa RI, Abdelhafez TH, et al. A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect Dis. 2019;9(1):932. doi: 10.1186/s12879-019-4571-5.
58. Vieillard V, Combadière B, Tubiana R, et al. HIV therapeutic vaccine enhances non-exhausted CD4+ T cells in a randomised phase 2 trial. NPJ Vaccines. 2019;4:25. doi: 10.1038/s41541-019-0117-5.
59. Рыжиков А.Б., Рыжиков Е.А., Богрянцева М.П., и др. Иммуногенные и протективые свойства кандидатной пептидной вакцины против SARS-CoV-2. Вестник Российской академии медицинских наук. 2021;76(1):5-19. doi: 10.15690/vramn1528
60. Ryzhikov AB, Ryzhikov EА, Bogryantseva MP, et al. Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Annals of the Russian academy of medical sciences. 2021;76(1):5-19. doi: 10.15690/vramn1528/ Ryzhikov AB, Ryzhikov ЕА, Bogryantseva MP, et al. A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the EpiVacCorona Vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (phase I–II). Russian Journal of Infection and Immunity. 2021;11(2):283-296 (in Russ.). doi: 10.15789/2220-7619-ASB-1699
Review
For citations:
Stepanova T.F., Trotsenko O.E., Bakshtankvskaya I.V., Bazykina E.A., Stepanova K.B. Peptide and m-RNA Vaccines: Peculiarities of Immunogenicity and Protective Effect. Epidemiology and Vaccinal Prevention. 2024;23(6):137-146. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-6-137-146