Preview

Epidemiology and Vaccinal Prevention

Advanced search

Neutralising and Non-neutralising Antibodies to SARS-CoV-2: Role during Infection and in the Evolution of Antigenic structure

https://doi.org/10.31631/2073-3046-2024-23-6-169-176

Abstract

Relevance. COVID-19, caused by the SARS-CoV-2 virus, remains a global public health threat despite the end of the pandemic. In the four years since the onset of the pandemic, the SARS-CoV-2 genome has undergone significant changes, particularly in the gene encoding the spike (S) protein. These changes resulted from the accumulation of immune responses in the human population, allowing the virus to evade the immune response. A significant proportion of the population was infected early in the pandemic or vaccinated with vaccines based on earlier variants of the virus. The emergence of new mutant variants raises concerns about the potential for severe COVID-19 in previously infected or vaccinated individuals.
Аim. To examine the specifics of antibody formation, as well as the spectrum and functional activity of these antibodies in patients with COVID-19.
Conclusions. Antibodies produced in response to infection or vaccination show diversity in spectrum and functional activity. Changes in the viral genome may reduce antibody effectiveness, highlighting the importance of monitoring new SARS-CoV-2 variants and developing adapted vaccines. These data will be key in shaping COVID-19 vaccination and treatment strategies in a changing epidemiological situation.

About the Authors

S. K. Pylaeva
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute); Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Sofya K. Pylaeva – junior researcher

Moscow



A. A. Sinyugina
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)
Russian Federation

Aleksandra A. Sinyugina

Moscow



L. I. Kozlovskaya
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute); Sechenov First Moscow State Medical University of Ministry of Healthcare of the Russian Federation (Sechenov University)
Russian Federation

Lubov I. Kozlovskaya – Dr. Sci. (Biol.), leading researcher; associate professor

Moscow



E. A. Artamonova
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)
Russian Federation

Evgenya A. Artamonova – junior researcher

Moscow



A. A. Erovichenkov
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)
Russian Federation

Alexandr A. Erovichenkov – Dr. Sci. (Med.), Professor

Moscow



R. F. Sayfullin
Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Ruslan F. Sayfullin – Cand. Sci. (Med.), associate professor

Moscow

+7 (926) 162-15-36



I. V. Gordeychuk
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute); Sechenov First Moscow State Medical University of Ministry of Healthcare of the Russian Federation (Sechenov University)
Russian Federation

Ilya V. Gordeychuk – Cand. Sci. (Med.)

Moscow



A. A Ishmukhametov
M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute); Sechenov First Moscow State Medical University of Ministry of Healthcare of the Russian Federation (Sechenov University)
Russian Federation

Aydar A. Ishmukhametov – the RAS corresponding member, Dr. Sci. (Med.), Professor

Moscow



References

1. Zhu, J., Ji, P., Pang, J., Zhong, Z., Li, H., He, C., Zhang, J., & Zhao, C. (2020). Clinical characteristics of 3062 COVID‐19 patients: A meta‐analysis. Journal of Medical Virology, 92, 1902–1914. https://doi.org/10.1002/jmv.25884

2. WHO. COVID-19 epidemiological update – 6 November 2024. Доступно на\ Available at:: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-173

3. WHO. Influenza and SARS-COV-2 tested specimens reported to FluNet from countries, areas and territories. Доступно на\ Available: https://app.powerbi.com/view?r=eyJrIjoiNzc4YTIxZjQtM2E1My00YjYxLWIxMDItNzEzMjkyY2E1MzU1IiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9

4. Carabelli AM, Peacock TP, Thorne LG, et al. COVID-19 Genomics UK Consortium; Peacock SJ, Barclay WS, de Silva TI, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177.

5. Perlman S, Masters PS. Coronaviridae: The Viruses and Their Replication in Fields Virology: Emerging Viruses, 7th Ed., Eds.: Howley PM, Knipe DM, Whelan S, Wolters Kluwer, 2020:410–448.

6. ВОЗ\WHO. Доступно на\Available: https://www.who.int/activities/tracking-SARS-CoV-2-variants.

7. Next strain, Доступно на\Available: https://nextstrain.org/ncov/gisaid/global/all-time,

8. Mykytyn AZ, Rissmann M, Kok A, et al. Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct.SciImmunol. 2022;7(75):eabq4450.

9. Fan Wu, Aojie Wang, Mei Liu, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. Аpril 2020 doi:https://doi.org/10.1101/2020.03.30.20047365

10. Li D, Sempowski GD, Saunders KO, et al. SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annu Rev Med. 2022;73:1–16.

11. Suthar MS, Zimmerman MG, Kauffman RC, et al. Rapid Generation of Neutralizing Antibody Responses in COVID-19 Patients. Cell Rep Med. 2020;1(3):100040

12. Huang Q, Han X, Yan J. Structure-based neutralizing mechanisms for SARS-CoV-2 antibodies. EmergMicrobesInfect. 2022;11(1):2412–2422.

13. Li CJ, Chang SC. SARS-CoV-2 spike S2-specific neutralizing antibodies. Emerg Microbes Infect. 2023;12(2):2220582.

14. Lampasona V, Secchi M, Scavini M, et al. Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study. Diabetologia. 2020;63(12):2548–2558.

15. Игнатьев Г. М., Козловская Л. И., Мефед К. М., и др. Определение антител к вирусу SARS-CoV-2 у пациентов с новой коронавирусной инфекцией. Инфекционные болезни: новости, мнения, обучение. 2022;11(1):21–27.\ Ignatiev G. M., Kozlovskaya L. I., Mefed K. M., et al. Determination of antibodies to the SARS-CoV-2 virus in patients with a new coronavirus infection. Infectious diseases: news, opinions, training. 2022;11(1):21–27 (In Russ.).

16. Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. NatMed. 2021;27(7):1205–1211

17. Feng S, Phillips DJ, White T, et al. Oxford COVID Vaccine Trial Group. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. NatMed. 2021;27(11):2032–2040.

18. Yang Y, Yang M, Peng Y, et al. Longitudinal analysis of antibody dynamics in COVID-19 convalescents reveals neutralizing responses up to 16 months after infection. Nat Microbiol. 2022;7(3):423–433

19. Earnest R, Uddin R, Matluk N, et al. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. CellRepMed. 2022;3(4):100583.

20. Generalova L. V., Burgasova O. A., Gushchin V. A., et al. Features of the humoral response in patients with COVID-19. Doctor. 2021;32(12):5–11 (In Russ.).

21. Shokina V. A., Matyushkina D. S., Krivonos D. V., et al. Humoral immune response to linear and conformational epitopes of SARSCoV-2 in patients with COVID-19. Immunology. 2023;44(1):38–52 (In Russ.).

22. Platonova T. A., Golubkova A. A., Karbovnichaya E. A., Smirnova S. S. Features of the formation of humoral immunity in individuals with various clinical manifestations of COVID-19. Epidemiology and Vaccinal Prevention. 2021;20(1):20–25 (In Russ.).

23. Fedorov V.S., Ivanova O.N., Karpenko I.L., Ivanov A.V. Immune response to a new coronavirus infection. Clinical practice. 2021;12(1):33–40 (In Russ.).

24. Zeng, W., Ma, H., Ding, C., et al. Characterization of SARS-CoV-2-specific antibodies in COVID-19 patients reveals highly potent neutralizing IgA. Sig Transduct Target Ther 6, 35 (2021). https://doi.org/10.1038/s41392-021-00478-7

25. Planas D, Veyer D, Baidaliuk, A et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276–280.

26. Mlcochova P, Kemp SA, Dhar MS, et al. Indian SARS-CoV-2 Genomics Consortium (INSACOG); Genotype to Phenotype Japan (G2P-Japan) Consortium; CITIID-NIHR Bio-Resource COVID-19 Collaboration; Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, et al.. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 2021;599(7883):114–119.

27. Sizikova T. E., Lebedev V. N., Kutaev D. A., Borisevich S. V. Characteristics of the delta variant (B.1.617) of the SARS-CoV-2 virus - the dominant agent of the third and fourth waves of the COVID-19 epidemic in Russia. Bulletin of the RCB Defense Forces. 2021;5(4):353–365 (In Russ.).

28. Arzumanyan A. M. Comparative analysis of morphological features of the Omicron and Delta strains of SARS-CoV-2. European Scientific Conference, Penza, April 7, 2022. - Penza: Science and Education (IP Gulyaev G.Yu.), 2022. - P. 168–174 (In Russ.).

29. Wang Q, Guo Y, Zhang RM, et al. Antibody neutralisation of emerging SARS-CoV-2 subvariants: EG.5.1 and XBC.1.6. LancetInfectDis. 2023;23(10):e397–e398.

30. Qu P, Evans JP, Zheng YM, et al. Evasion of neutralizing antibody responses by the SARS-CoV-2 BA.2.75 variant. Cell Host Microbe. 2022;30(11):1518–1526.e4.

31. Liu H, Wilson IA. Protective neutralizing epitopes in SARS-CoV-2. Immunol Rev. 2022;310(1):76–92.

32. Chen Y, Zhao X, Zhou H, Zhu H, Jiang S, Wang P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat Rev Immunol. 2023;23(3):189–199.

33. Sars-CoV-2 circulating variants. Доступно на\Available: https://viralzone.expasy.org/9556,

34. Пылаева С. К., Козловская Л. И., Еровиченков А. А. и др. Спектр вируснейтрализующих антител у пациентов с COVID-19, заболевших во время циркуляции различных вариантов SARS-CoV-2. Эпидемиология и Вакцинопрофилактика. 2024;23(5):63–72. https://doi.org/10.31631/2073-3046-2024-23-5-63-72

35. Moderbacher CR, Ramirez SI, Dan JM, et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity.Cell. 2020;183(4):996–1012.e19.

36. Wen J., Cheng Y., Ling R., et al. Antibody-dependent enhancement of coronavirus. Int. J. Infect. Dis. 2020;100:483–489.

37. Lee N, Chan PK, Ip M, et al. Anti-SARS-CoV IgG response in relation to disease severity of severe acute respiratory syndrome. J ClinVirol. 2006;35(2):179–84.

38. Zanella I, Degli AM, Marchese V, et al. Non-neutralizing antibodies: Deleterious or propitious during SARS-CoV-2 infection? IntImmunopharmacol. 2022;110:108943.

39. Kruglov AA, Bondareva MA, Gogoleva VS, et al. Inactivated whole virion vaccine protects K18-hACE2 Tg mice against the Omicron SARS-CoV-2 variant via cross-reactive T cells and nonneutralizing antibody responses. Eur J Immunol. 2024 Mar;54(3):e2350664. doi: 10.1002/eji.202350664. Epub 2023 Dec 31. PMID: 38088236.

40. Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203–4219.e32.

41. DBello-Gil D, Manez R. Exploiting natural anti-carbohydrate antibodies for therapeutic purposes. Biochemistry. 2015;80:836–845.

42. Ziganshina MM, Shilova NV, Khalturina EO, et al. Antibody-Dependent Enhancement with a Focus on SARS-CoV-2 and Anti-Glycan Antibodies. Viruses. 2023;15(7):1584.


Review

For citations:


Pylaeva S.K., Sinyugina A.A., Kozlovskaya L.I., Artamonova E.A., Erovichenkov A.A., Sayfullin R.F., Gordeychuk I.V., Ishmukhametov A.A. Neutralising and Non-neutralising Antibodies to SARS-CoV-2: Role during Infection and in the Evolution of Antigenic structure. Epidemiology and Vaccinal Prevention. 2024;23(6):169-176. (In Russ.) https://doi.org/10.31631/2073-3046-2024-23-6-169-176

Views: 672


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)