Study of the General Toxic Properties of the Vaccine CoviVac in Immature Rats
https://doi.org/10.31631/2073-3046-2025-24-1-68-79
Abstract
Relevance. During 2021 and early 2022, the prevalence of COVID-19 in the child population was 9.5%, the frequency of hospitalizations of children and adolescents increased, and fatal outcomes began to be recorded. And in 2022–2023, the proportion of children infected with COVID-19 increased to 18%. At the same time, vaccination remains the most effective way to protect against infection. Studying the safety of vaccines for the prevention of coronavirus infection is an urgent task.
Objective of the study. To study the safety of a vaccine for the prevention of a new coronavirus infection in immature animals.
Materials and methods. The study was conducted on Wistar rats (60 males and 52 females). During the study, the vaccine or placebo was administered four times with an interval of 2 weeks, in doses of 0.125; 0.25 or 0.5 ml / animal. The dynamics of body weight, animal behavior in the open field test, mass coefficients of internal organs, spermogram were assessed, and histological assessment of the reproductive system organs and the injection site was performed.
Results and discussion. No toxic effect of the KoviVak vaccine on animal behavior was revealed, positive dynamics of body weight of experimental animals were recorded. When assessing toxicity in relation to the reproductive system, no effect of placebo or vaccine on spermogram parameters and histological structure of organs was revealed. No effect of placebo and KoviVak vaccine on mass coefficients of internal organs was revealed. Histological changes at the injection site recorded in animals receiving placebo and KoviVak vaccine are explained by the mechanism of action of aluminum hydroxide, which is part of the placebo and vaccine.
Conclusion. The preclinical study on juvenile animals showed the safety of the KoviVak vaccine.
About the Authors
A. A. SiniuginaRussian Federation
Aleksandra A. Siniugina – Head of Quality and Innovation Development
Moscow
+7 (495) 841-90-07 (add. 3741)
A. A. Saprykina
Russian Federation
Anastasia A. Saprykina – junior research fellow
Leningrad region, Vsevolozhsky district
+7 (812) 603-74-28
N. A. Lycheva
Russian Federation
Natalya A. Lycheva – Deputy Head of the Department for Preclinical Research
Moscow
+7 (495) 841-90-07 (add. 3115)
K. L. Kryshen
Russian Federation
Kirill L. Kryshen’ – Head of the Department of Specific Toxicology and Microbiology
Leningrad region, Vsevolozhsky district
+7 (812) 603-74-28
A. S. Lunin
Russian Federation
Aleksandr S. Lunin – Head of the Department of Preclinical Research and Diagnostic Drugs
Moscow
+7 (495) 841-90-07 (add. 3103)
V. D. Apolohov
Russian Federation
Vasiliy D. Apolokhov – researcher
Moscow
+7 (495) 841-90-07
A. D Chernavtseva
Russian Federation
Anastasiya D. Chernavtseva – virologist of the department of preclinical studies and diagnostic drugs
Moscow
+7 (495) 841-90-07 (add. 3122)
A. A. Kovpak
Russian Federation
Anastasiya A. Kovpak – Head of the group of purification processes and formulation of finished dosage forms
Moscow
+7 (495) 841-90-07 (add. 3164)
Y. Y. Ivin
Russian Federation
Yuriy Yu. Ivin – Head of the Department for Development and Implementation of Innovative and Semi-Industrial Technologies
Moscow
+7 (495) 841-90-07 (add. 3229)
A. N. Piniaeva
Russian Federation
Anastasia N. Pinyaeva – Chief technologist
Moscow
+7 (495) 841-90-07 (add. 3159)
M. N. Makarova
Russian Federation
Marina N. Makarova – Director
Leningrad region, Vsevolozhsky district
+7 (812) 603-74-28
V. G. Makаrov
Russian Federation
Valery G. Makarov – Scientific supervisor
Leningrad region, Vsevolozhsky district
+7 (812) 603-74-28
A. A. AA Ishmukhametov
Russian Federation
Aidar A. Ishmukhametov – General Director
Moscow
+7 (495) 841-90-07 (add. 0111)
References
1. Musaelyan O.A. Osobennosti techeniya i vospalitel’nye markery u detej s koronavirusnoj infekciej COVID-19. [Avtoreferat dis.]. Stavropol’; 2024. Available at: https://stgmu.ru/science/sub-120/ Ssylka aktivna na 04 dekabrya 2024. Accessed: 04 Dec 2024. (In Russ).
2. Tikhomirova K.K., Kharit S.M. Do we need coronavirus vaccination today? Journal Infectology. 2023;15(3):5–14 (In Russ.). doi: 10.22625/2072-6732-2023-15-3-5-14
3. Rukovodstvo po soderzhaniyu i ispol’zovaniyu laboratornyh zhivotnyh. Vos’moe izd. per. s ang . Ed.: Belozerceva I.V., Blinov D.V., Krasil’shchikova M.S. M.: IRBIS, 2017.
4. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes
5. Mironov A.N. Rukovodstvo po provedeniyu doklinicheskih issledovanij lekarstvennyh sredstv. M.: Grif i K; 2012.
6. ICH guideline S11 on nonclinical safety testing in support of development of paediatric pharmaceuticals EMA/CHMP/ICH/616110/2018.
7. WHO Guidelines on nonclinical evaluation of vaccines. Geneva, WHO, 2005.
8. Vasil`eva E. I. Fizicheskoe razvitie detej: uchebno-metodicheskoe posobie dlya inostranny`x studentov. Irkutsk: IGMU; 2013. (in Russ).
9. Yuansheng Sun et All. Overview of global regulatory toxicology requirements for vaccines and adjuvants. Journal of Pharmacological and Toxicological Methods. 2012; 65: 49–57. doi: 10.1016/j.vascn.2012.01.002.
10. Markova I. V. Farmakologicheskoe izuchenie vozrastnyh osobennostej v dejstvii lekarstvennyh sredstv, predlagaemyh dlya klinicheskogo izucheniya v pediatricheskoj praktike. M.: LPMI, 1988.
11. WHO laboratory manual for the examination and processing of human semen. 5th ed. // World Health Organization. –2010. –271 р.
12. Lugovik I. A., Makarova M. N. Toksikologicheskie issledovaniya. Referentnye intervaly massovyh koefficientov vnutrennih organov na vyborke, sostoyashchej iz 1000 autbrednyh krys. Laboratornye zhivotnye dlya nauchnyh issledovanij. 2021; (1): 3–11 (In Russ).
13. Peter C. P., Burek J. D., Zwieten M. J. V. Spontaneous nephropathies in rats. Toxicologic Pathology. 1986. 14 (1): 91–100. Doi: 10.1177/019262338601400111.
14. Hamza Fares B, Abdul Hussain Al-Tememy H, Mohammed Baqir Al-Dhalimy A. Evaluation of the Toxic Effects of Aluminum Hydroxide Nanoparticles as Adjuvants in Vaccinated Neonatal Mice. Arch Razi Inst. 2022;77(1):221–228. doi: 10.22092/ARI.2021.356418.1839. PMID: 35891766; PMCID: PMC9288589.
15. Alpatova N.A., Avdeeva Zh.I., Lysikova S.L., et al. General Characteristics of Adjuvants and Their Mechanism of Action (Part 1). BIOpreparations. Prevention, Diagnosis, Treatment. 2020;20(4):245–256. (In Russ.) doi: 10.30895/2221-996X-2020-20-4-245-256
16. Poznyak T.A., Knyazeva O.R., Goncharov A.E. Ad»yuvanty kak effektivnye sredstva dostavki antigenov dlya vakcin novogo pokoleniya. Medicinskie novosti. 2021. №4 (319). (In Russ).
17. Kazyuchic M. V. Vliyanie ad»yuvantnyh kompozicij na morfologicheskie izmeneniya v tkanyah na meste vvedeniya i organah immuniteta krys, vakcinirovannyh protiv pasterelleza. Veterinarnaya nauka –proizvodstvu. 2009; 1(40): 33–40. (In Russ).
Review
For citations:
Siniugina A.A., Saprykina A.A., Lycheva N.A., Kryshen K.L., Lunin A.S., Apolohov V.D., Chernavtseva A.D., Kovpak A.A., Ivin Y.Y., Piniaeva A.N., Makarova M.N., Makаrov V.G., AA Ishmukhametov A.A. Study of the General Toxic Properties of the Vaccine CoviVac in Immature Rats. Epidemiology and Vaccinal Prevention. 2025;24(1):68-79. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-1-68-79