Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Механизмы клеточного иммунного ответа при бруцеллезе

https://doi.org/10.31631/2073-3046-2016-15-6-80-87

Полный текст:

Аннотация

В обзоре обсуждается современное состояние вопроса взаимодействия бруцелл с макроорганизмом. Приведены сведения о механизмах персистенции бруцелл в организме хозяина за счет их способности длительно сохраняться в клетках иммунофагоцитарной системы. Представлены данные о различиях бруцелл в гладкой и шероховатой формах по инвазивной способности. Показана роль макрофагов в бруцеллезной инфекции. Обозначены перспективные направления исследований в области иммунобиологии бруцеллеза.

Об авторах

В. И. Дубровина
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


Ж. А. Коновалова
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


К. Ю. Ястремская
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


Н. Л. Баранникова
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


Л. Е. Токарева
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


С. В. Балахонов
ФКУЗ «Иркутский научно-исследовательский противочумный институт Роспотребнадзора»
Россия


Список литературы

1. Лабинская А.С., Костюкова Н.Н., Иванова С.М., ред. Руководство по медицинской микробиологии. Частная медицинская микробиология и этиологическая диагностика инфекций. Книга II. Москва: БИНОМ; 2012.

2. Ющук Н.Д., Венгеров Ю.Я., ред. Инфекционные болезни: национальное руководство. Москва: ГЭОТАР-Медиа; 2010.

3. Pei J., Wu Q., Kahl-Mc Donagh M., Ficht T.A. Cytotoxicity in macrophages infected with rough Brucella mutants is type IV secretion system dependent. Infection and Immunity. 2008; 76(1): 30 - 37.

4. Roop R.M., Bellaire B.H., Valderas M.W., Cardelli J.A. Adaptation of the Brucellae to their intracellular niche. Molecular Microbiology. 2004; 52 (3): 621 - 630.

5. Copin R., Vitry M.A., Mambres D.H., Machelart A., De Trez C., Vanderwinden J.M. et al. Muraillee E. In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice. PLoSPathog. 2012; 8 (3): e1002575. doi:10.1371 / journal. ppat.1002575.

6. Hanot Mambres D., Machelart A., Vanderwinden J.M., De Trez C., Ryffel B., Letesson J.J. et al. In situ characterization of splenic Brucella melitensis reservoir cells during the chronic phase of infection in susceptible mice. PLoS ONE. 2015; 10 (9) e0137835. doi:10.1371/journal.pone.0137835.

7. Dorneles E.M., Teixeira-Carvalho A., Arajo M.S., Sriranganathan N., Lage A.P. Immune response triggered by Brucella abortus following infection or vaccination. Vaccine. 2015; 33 (31): 3659 - 3666.

8. Ahmed W., Zheng K., Liu Z-F. Establishment of chronic infection: Brucella>s stealth strategy. Frontiers in Cellular and Infection Microbiology. 2016; Volume 6 Article 30 http://dx.doi.org/10.3389/fcimb.2016.00030.

9. He Y. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics. Frontiers in Cellular and Infection Microbiology. 2012; 2 (2) doi:10.3389/fcimb.2012.00002.

10. Olsen S.C., Palmer M.V. Advancement of knowledge of Brucella over the past 50 years. Veterinary Pathology. 2014; 51 (6): 1076 - 1089.

11. Борисевич И.В., Дармов И.В. ред. Руководство по вакцинопрофилактике особо опасных инфекций. Киров: ООО «Кировская областная типография»; 2011.

12. Enright F.M., Duncan J.R. The pathogenesis and pathobiology of Brucellainfections in domestic animals. In Animal Brucellosis. 1990; Ed.: K.H. Nielsen, J.R. Duncan; Boca Raton; CRC Press: 301 - 320.

13. Barquero-Calvo E., Chaves-Olarte E., Weiss D.S., Guzman-Verri C., Chacon-Diaz C., Rucavado A. et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007; 2 (7): e631.

14. Gee J.M., Kovach M.E., Grippe V.K., Hagius S., Walker J.V., Elzer P.H. et al. Role of catalase in the virulence of Brucella melitensis in pregnant goats. Veterinary Microbiology. 2004; 102 (1 - 2): 111 - 115.

15. Roop R.M. II, Gaines J.M., Anderson E.S., Caswell C.C., Martin D.W. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Medical Microbiology and Immunology. 2009; 198 (4): 221 - 238.

16. Xiang Z., Zheng W., He Y. BBP: Brucella genome annotation with literature mining and curation. BMC Bioinformatics. 2006; 7 (1): 347.

17. Lin Y., Xiang Z., He Y. Ontology-based representation and analysis of host-Brucella interactions. J. of Biomedical Semantics. 2015; 6 : 37. doi 10.1186/ s13326-015-0036-y.

18. O’Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M.L., Bourg G., Foulongne V. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Molecular Microbiology. 1999; 33 (6): 1210 - 20.

19. Pei J., Kahl-McDonagh M., Ficht T.A. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Frontiers in Cellular and Infection Microbiology. 2014; 4 (23): 1 - 9.

20. Boschiroli M.L., Ouahrani-Bettache S., Foulongne V., Michaux-Charachon S., Bourg G., Allardet-Servent A. et al. Type IV secretion and Brucella virulence. Veterinary Microbiology. 2002; 90 (1 - 4): 341 - 348.

21. de Jong M.F., Sun Y.H., den Hartigh A.B., van Dijl J.M., Tsolis R.M. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Molecular Microbiology. 2008; 70 (6): 1378 - 1396.

22. Jarvis B.W., Harris T.H., Qureshi N., Splitter G.A. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infection and Immunity. 2002; 70 (12): 7165 - 7168.

23. Forestier C., Deleuil F., Lapaque N., Moreno E., Gorvel J.P Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. Immunology. 2000; 165 (9): 5202 - 10.

24. Burkhardt S., Jimenez de Bagues M.P, Liautard J.P, Kohler S., Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infection and Immunity. 2005; 73 (10): 6782 - 6790.

25. Sangari F.J., Aguero J., Garcia-Lobo J.M. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology. 2000; 146 (Pt 2): 487 - 495.

26. Crasta O.R., Folkerts O., Fei Z., Mane S.P, Evans C., Martino-Catt S. et al. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS One. 2008; 3(5): e2193.

27. Baldwin C.L., Goenka R. Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Critical Reviews In Immunology. 2006; 26 (5): 407 - 442.

28. Copin R., De Baetselier P., Carlier Y., Letesson J.J. ,Muraille E. MyD88 dependent activation of B220(2)CD11b(+)LY-6C(+) dendritic cells during Brucella melitensis infection. Immunology. 2007; 178: 5182 - 5191.

29. Ko J., Gendron-Fitzpatrick A., Splitter G.A. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. Immunology. 2002; 168: 2433 - 2440.

30. Murphy E.A., Sathiyaseelan J., Parent M.A., Zou B.X., Baldwin C.L. Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology. 2001; 103: 511-518.

31. Stevens M.G., Pugh G.W., Tabatabai L.B. Effects of Gamma-interferon and indomethacin in preventing Brucella-abortus infections in mice. Infection and Immunity. 1992; 60: 4407 - 4409.

32. Zhan Y.F., Cheers C. Endogenous gamma-interferon mediates resistance to Brucella-abortus infection. Infection and Immunity. 1993; 61: 4899-4901.

33. Corbel M.J. Brucellosis: An overview. Emerging Infectious Diseases. 1997; 3: 213 - 221.

34. Young E.J. An Overview of Human Brucellosis. Clinical Infectious Diseases. 1995; 21: 283 - 289.

35. Spink W.W. The nature of Brucellosis. Minneapolis: University of Minnesota Press. 1956: 460.

36. Zhan Y.F., Cheers C. Endogenous Interleukin-12 is involved in resistance to Brucella-abortus infection. Infection and Immunity. 1995; 63: 1387 - 1390.

37. Dornand J., Gross A., Lafont V., Liautard J., Oliaro J., Liautard J.P. The innate immune response against Brucella in humans. Veterinary Microbiology. 2002; 90 (1 - 4): 383 - 394.

38. Meador V.P, Deyoe B.L. Intracellular localization of Brucella abortus in bovine placenta. Veterinary Pathology. 1989; 26 (6): 513 - 515.

39. Baldi PC., Giambartolomei G.H. Immunopathology of Brucella infection. Recent Patents on Anti-Infective Drug Discovery. 2013; 8 (1): 18 - 26.

40. de Figueiredo P, Ficht T.A., Rice-Ficht A., Rossetti C.A., Adams L.G. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. American Society for Investigative Pathology. 2015; 185 (6): 1505 - 17.

41. Gomes M.T., Campos P.C., de Almeida L.A., Oliveira F.S., Costa M.M., Marim F.M., Pereira G.S.M., Oliveira S.C. The role of innate immune signals in immunity to Brucella abortus. Frontiers in Cellular and Infection Microbiology. 2012; 2 (130). Доступно на: http://dx.doi.org/10.3389/fcimb.2012.00002.

42. Barquero-Calvo E., Chaves-Olarte E., Weiss D.S., Guzman-Verri C., Chacon-Diaz C., Rucavado A. et al. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One. 2007; 2 (7): e631.

43. Gee J.M., Kovach M.E., Grippe V.K., Hagius S., Walker J.V., Elzer P.H. et al. Role of catalase in the virulence of Brucella melitensis in pregnant goats. Veterinary Microbiology. 2004; 102 (1 - 2): 111 - 115.

44. Roop R.M. II, Gaines J.M., Anderson E.S., Caswell C.C., Martin D.W. Survival of the fittest: how Brucella strains adapt to their intracellular niche in the host. Medical Microbiology and Immunology. 2009; 198 (4): 221 - 238.

45. Xiang Z., Zheng W., He Y. BBP: Brucella genome annotation with literature mining and curation. BMC Bioinformatics. 2006; 7 (1): 347.

46. Lin Y., Xiang Z., He Y. Ontology-based representation and analysis of host-Brucella interactions. J. of Biomedical Semantics. 2015; 6 : 37. doi 10.1186/ s13326-015-0036-y.

47. O’Callaghan D., Cazevieille C., Allardet-Servent A., Boschiroli M.L., Bourg G., Foulongne V. et al. A homologue of the Agrobacterium tumefaciens VirB and Bordetella pertussis Ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Molecular Microbiology. 1999; 33 (6): 1210 - 20.

48. Pei J., Kahl-McDonagh M., Ficht T.A. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Frontiers in Cellular and Infection Microbiology. 2014; 4 (23): 1 - 9.

49. Boschiroli M.L., Ouahrani-Bettache S., Foulongne V., Michaux-Charachon S., Bourg G., Allardet-Servent A. et al. Type IV secretion and Brucella virulence. Veterinary Microbiology. 2002; 90 (1 - 4): 341 - 348.

50. de Jong M.F., Sun Y.H., den Hartigh A.B., van Dijl J.M., Tsolis R.M. Identification of VceA and VceC, two members of the VjbR regulon that are translocated into macrophages by the Brucella type IV secretion system. Molecular Microbiology. 2008; 70 (6): 1378 - 1396.

51. Jarvis B.W., Harris T.H., Qureshi N., Splitter G.A. Rough lipopolysaccharide from Brucella abortus and Escherichia coli differentially activates the same mitogen-activated protein kinase signaling pathways for tumor necrosis factor alpha in RAW 264.7 macrophage-like cells. Infection and Immunity. 2002; 70 (12): 7165 - 7168.

52. Forestier C., Deleuil F., Lapaque N., Moreno E., Gorvel J.P. Brucella abortus lipopolysaccharide in murine peritoneal macrophages acts as a down-regulator of T cell activation. Immunology. 2000; 165 (9): 5202 - 10.

53. Burkhardt S., Jimenez de Bagues M.P, Liautard J.P., Kohler S., Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Infection and Immunity. 2005; 73 (10): 6782 - 6790.

54. Sangari F.J., Aguero J., Garcia-Lobo J.M. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology. 2000; 146 (Pt 2): 487 - 495.

55. Crasta O.R., Folkerts O., Fei Z., Mane S.P., Evans C., Martino-Catt S. et al. Genome sequence of Brucella abortus vaccine strain S19 compared to virulent strains yields candidate virulence genes. PLoS One. 2008; 3(5): e2193.

56. Baldwin C.L., Goenka R. Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Critical Reviews In Immunology. 2006; 26 (5): 407 - 442.

57. Copin R., De Baetselier P, Carlier Y., Letesson J.J. ,Muraille E. MyD88 dependent activation of B220(2)CD11b(+)LY-6C(+) dendritic cells during Brucella melitensis infection. Immunology. 2007; 178: 5182 - 5191.

58. Ko J., Gendron-Fitzpatrick A., Splitter G.A. Susceptibility of IFN regulatory factor-1 and IFN consensus sequence binding protein-deficient mice to brucellosis. Immunology. 2002; 168: 2433 - 2440.

59. Murphy E.A., Sathiyaseelan J., Parent M.A., Zou B.X., Baldwin C.L. Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology. 2001; 103: 511-518.

60. Stevens M.G., Pugh G.W., Tabatabai L.B. Effects of Gamma-interferon and indomethacin in preventing Brucella-abortus infections in mice. Infection and Immunity. 1992; 60: 4407 - 4409.

61. Zhan Y.F., Cheers C. Endogenous gamma-interferon mediates resistance to Brucella-abortus infection. Infection and Immunity. 1993; 61: 4899-4901.

62. Corbel M.J. Brucellosis: An overview. Emerging Infectious Diseases. 1997; 3: 213 - 221.

63. Young E.J. An Overview of Human Brucellosis. Clinical Infectious Diseases. 1995; 21: 283 - 289.

64. Spink W.W. The nature of Brucellosis. Minneapolis: University of Minnesota Press. 1956: 460.

65. Zhan Y.F., Cheers C. Endogenous Interleukin-12 is involved in resistance to Brucella-abortus infection. Infection and Immunity. 1995; 63: 1387 - 1390.

66. Dornand J., Gross A., Lafont V., Liautard J., Oliaro J., Liautard J.P. The innate immune response against Brucella in humans. Veterinary Microbiology. 2002; 90 (1 - 4): 383 - 394.

67. Meador V.P., Deyoe B.L. Intracellular localization of Brucella abortus in bovine placenta. Veterinary Pathology. 1989; 26 (6): 513 - 515.

68. Baldi P.C., Giambartolomei G.H. Immunopathology of Brucella infection. Recent Patents on Anti-Infective Drug Discovery. 2013; 8 (1): 18 - 26.

69. de Figueiredo P., Ficht T.A., Rice-Ficht A., Rossetti C.A., Adams L.G. Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. American Society for Investigative Pathology. 2015; 185 (6): 1505 - 17.

70. Gomes M.T., Campos P.C., de Almeida L.A., Oliveira F.S., Costa M.M., Marim F.M., Pereira G.S.M., Oliveira S.C. The role of innate immune signals in immunity to Brucella abortus. Frontiers in Cellular and Infection Microbiology. 2012; 2 (130). Aviable at: http://dx.doi.org/10.3389/fcimb.2012.00002.


Для цитирования:


Дубровина В.И., Коновалова Ж.А., Ястремская К.Ю., Баранникова Н.Л., Токарева Л.Е., Балахонов С.В. Механизмы клеточного иммунного ответа при бруцеллезе. Эпидемиология и Вакцинопрофилактика. 2016;15(6):80-87. https://doi.org/10.31631/2073-3046-2016-15-6-80-87

For citation:


Dubrovina V.I., Konovalova Z.A., Yastremskaya K.U., Barannikova N.L., Tokareva L.E., Balakhonov S.V. The Mechanisms of CellularImmune Response in Brucellosis. Epidemiology and Vaccinal Prevention. 2016;15(6):80-87. (In Russ.) https://doi.org/10.31631/2073-3046-2016-15-6-80-87

Просмотров: 71


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)