Biotechnology in Genomic Surveillance. Status and development prospects
https://doi.org/10.31631/2073-3046-2025-24-3-4-13
Abstract
Relevance. In 2021, the World Health Assembly called on WHO Member States to strengthen the role of genomic epidemiological surveillance.
Objective. To present a revolutionary range of technological tools that determine the success of genomic epidemiological surveillance.
Results and discussion. Approaches that can take genomic epidemiological surveillance to a new technological level include rapid nucleic acid amplification methods, including isothermal amplification methods, metagenomic and targeted analysis using high-throughput sequencing technologies, a targeted genome editing system, as well as diagnostic solutions based on it, and the development of genomic sequence databases. In addition, it is necessary to note the importance of developing and implementing a comprehensive approach to the implementation of the genomic epidemiological surveillance system, taking into account the rapid development of a number of fundamental biological sciences related to epidemiology, as well as the wide application of information technologies in the processing of large data sets. Conclusion. Global trends confidently demonstrate a reduction in the time it takes for a technology to transition from scientific development to widespread practical application necessary to protect the population in the context of an epidemic spread of infections caused by previously unknown pathogens. For timely forecasting and prompt response to biological threats and ensuring sanitary and epidemiological well-being, the Russian Federation has successfully applied a triad of technologies: genomic epidemiological surveillance, mobile technologies and big data analytics. The authors consider biotechnological areas and technologies, the improvement of which will ensure the technological leadership of the Russian Federation in the field of genomic epidemiological surveillance.
About the Authors
V. G. AkimkinRussian Federation
Vasily G. Akimkin – Academician of the Russian Academy of Sciences, Dr. Sci. (Med.), Director
3a, st. Novogireevskaya, Moscow, 111123
+7 (495) 974-96-46 add. 12-15
A. S. Cherkashina
Russian Federation
Anna S. Cherkashina – Cand. Sci. (Chem.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (985) 191-81-79
A. I. Tyumentsev
Russian Federation
Alexandr I. Tyumentsev – Cand. Sci. (Biol.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (495) 974-96-46 доб. 26-27
M. A. Tyumentseva
Russian Federation
Marina A. Tyumentseva – Cand. Sci. (Biol.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (495) 974-96-46 доб. 26-27
K. F. Khafizov
Russian Federation
Kamil F. Khafizov – Cand. Sci. (Biol.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (495) 974-96-46 add. 12-15
V. V. Petrov
Russian Federation
Vadim V. Petrov
3a, st. Novogireevskaya, Moscow, 111123
+7 (926) 865-89-96
T. A. Semenenko
Russian Federation
Tatiana A. Semenenko – Dr. Sci. (Med.)
Moscow
+7 (499) 193-30-0
Yu. L. Lebedeva
Russian Federation
Yuliya L. Lebedeva – Cand. Sci. (Biol.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (916) 881-49-41
E. A. Cherkashin
Russian Federation
Evgeny A. Cherkashin – Cand. Sci. (Chem.)
3a, st. Novogireevskaya, Moscow, 111123
+7 (495) 974-96-46 add. 12-15
References
1. Akimkin VG, Semenenko TA, Khafizov KF, et al. Genomic surveillance strategy. Problems and perspectives. J Microbiol Epidemiol Immunobiol. 2024;101(2):163–172. https://doi.org/10.36233/0372-9311-507
2. Carter LL, Yu MA, Sacks JA, et al. Global genomic surveillance strategy for pathogens with pandemic and epidemic potential 2022–2032. Bull World Health Organ. 2022;100(4):239–239A. https://doi.org/10.2471/BLT.22.288220
3. https://rospotrebnadzor.ru/about/info/news/news_details.php?ELEMENT_ID=26987 (Accessed: 11.07.2024).
4. Arora N, Chaudhary A, Prasad A. Editorial: Methods and applications in molecular diagnostics. Front Mol Biosci. 2023;10(July):1–3. https://doi.org/10.3389/fmolb.2023.1239005
5. Liu Q, Jin X, Cheng J, et al. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep. 2023;27(5):1–14. https://doi.org/10.3892/mmr.2023.12991
6. Alamri AM, Alkhilaiwi FA, Ullah Khan N. Era of Molecular Diagnostics Techniques before and after the COVID-19 Pandemic. Curr Issues Mol Biol. 2022;44(10):4769–4789. https://doi.org/10.3390/cimb44100325
7. Garg N, Ahmad FJ, Kar S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr Res Microb Sci. 2022;3:100120. https://doi.org/https://doi.org/10.1016/j.crmicr.2022.100120
8. Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): Expansion of its practical application as a tool to achieve universal health coverage. J Infect Chemother. 2020;26(1):13–17. https://doi.org/https://doi.org/10.1016/j.jiac.2019.07.020
9. Cao Y, Kim H-J, Li Y, et al. Helicase-Dependent Amplification of Nucleic Acids. Curr Protoc Mol Biol. 2013;104(1):15.11.1–15.11.12. https://doi.org/https://doi.org/10.1002/0471142727.mb1511s104
10. Jeong Y-J, Park K, Kim D-E. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci. 2009;66(20):3325–3336. https://doi.org/10.1007/s00018-009-0094-3
11. Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 2019;144(1):31–67. https://doi.org/10.1039/c8an01621f
12. Tan M, Liao C, Liang L, et al. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol. 2022;12(November):1–13. https://doi.org/10.3389/fcimb.2022.1019071
13. Das D, Lin CW, Chuang HS. LAMP-Based Point-of-Care Biosensors for Rapid Pathogen Detection. Biosensors. 2022;12(12):1–39. https://doi.org/10.3390/bios12121068
14. Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosens Bioelectron. 2017;98:494–506. https://doi.org/10.1016/j.bios.2017.07.024
15. Hoornstra D, Stukolova OA, Karan LS, et al. Development and Validation of a Protein Array for Detection of Antibodies against the Tick-Borne Pathogen Borrelia miyamotoi. Microbiol Spectr. 2022;10(6). https://doi.org/10.1128/spectrum.02036-22
16. Li HY, Jia WN, Li XY, et al. Advances in Detection of Infectious Agents by Aptamer-based Technologies. Emerg Microbes Infect. Published online 2020:1–38. https://doi.org/10 .1080/22221751.2020.1792352
17. Zamotaeva T.L., et al. Lyophilization of enzymes for polymerase chain reaction //. Biotekhnologiya. 2023. Vol. 39, № 4. P. 50–54. (In Russ). https://doi.org/10.56304/S0234275823040105
18. Pika MI, Mikheeva OO, Solovyova ED, et al. Production of Bst polymerase for diagnosis of different infections using loop-mediated isothermal amplification. J Microbiol Epidemiol Immunobiol. 2023;100(3):210-218. https://doi.org/10.36233/0372-9311-364
19. Tyumentseva M, Tyumentsev A, Akimkin V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int J Mol Sci. 2023;24(22). https://doi.org/10.3390/ijms242216077
20. Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356(6336):438–442. https://doi.org/10.1126/science.aam9321
21. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya RNK virusa gepatita S genotipov 1b i 3a v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2800421. Byul. № 21 ot 21.07.2023. Available at: https://patents.google.com/patent/RU2800421C1/ru. Accessed: 02 Aug 2024. (In Russ).
22. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya DNK virusa gepatita B v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2782700. Byul. № 31 ot 01.11.2022. Available at: https://patents.google.com/patent/RU2782700C1/ru. Accessed: 02 Aug 2024. (In Russ).
23. Tyumentsev A. I., Tyumentseva M. A., Akimkin V.G. Sistema CRISPR-Cas dlya vyyavleniya DNK virusa Dzhona Kanningema (JCPyV) v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2747820. Byul. № 2 ot 14.05.2021. Available at: https://patents.google.com/patent/RU2747820C1/ru. Accessed: 02 Aug 2024. (In Russ).
24. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya RNK virusa SARS-CoV-2 v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2764023. Byul. № 2 ot 12.01.2022. Available at: https://patents.google.com/patent/RU2764023C1/ru. Accessed: 02 Aug 2024. (In Russ).
25. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas14 dlya vyyavleniya RNK virusa SARS-CoV-2 v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2764020. Byul. № 2 ot 12.01.2022. Available at: https://patents.google.com/patent/RU2764020C1/ru. Accessed: 02 Aug 2024. (In Russ).
26. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya RNK virusa immunodefitsita cheloveka (VICH-1) v ul’tranizkikh kontsentratsiyakh v ul’tranizkikh kontsentratsiyakh.: Patent RUS №2802783. Byul. № 25 ot 01.09.2023. Available at: https://patents.google.com/patent/RU2802783C1/ru. Accessed: 02 Aug 2024. (In Russ).
27. Akimkin V. G., Tyumentsev A. I., Tyumentseva M. A. Sistema CRISPR-Cas dlya detektsii provirusnoy DNK virusa immunodefitsita cheloveka, integrirovannoy v genom cheloveka, v ul’tranizkikh kontsentratsiyakh.: Patent RUS № 2720768. Byul. № 14 ot 13.05.2020. Available at: https://patents.google.com/patent/RU2720768C1/ru. Accessed: 02 Aug 2024. (In Russ).
28. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya gena exoU, kodiruyushchego ekzotoksin sistemy sekretsii tret’yego tipa, Pseudomonas aeruginosa, v ul’tranizkikh kontsentratsiyakh. Patent RUS №2791879. Byul. № 8 ot 14.03.2023. Available at: https://patents.google.com/patent/ RU2791879C1/ru. Accessed: 02 Aug 2024. (In Russ).
29. Tyumentsev A. I., Tyumentseva M. A., Prelovskaya A. N., Akimkin V.G. Sistema CRISPR-Cas12 dlya vyyavleniya gena antibiotikoustoychivosti mecA Staphylococcus aureus v ul’tranizkikh kontsentratsiyakh.: Patent RUS №2782314. Byul. № 30 ot 25.10.2022. Available at: https://patents.google.com/patent/RU2782314C1/ru. Accessed: 02 Aug 2024. (In Russ).
30. Akimkin V. G., Tyumentsev A. I., Tyumentseva M. A. Sistema CRISPR-Cas dlya vyyavleniya gena antibiotikoustoychivosti blaVIM-2 (metallo-beta-laktamaza klass B VIM-2) Pseudomonas aeruginosa v ul’tranizkikh kontsentratsiyakh.: Patent RUS №2743861. Byul. № 7 ot 01.03.2021. Available at: https://patents.google.com/patent/RU2743861C1/ru. Accessed: 02 Aug 2024. (In Russ).
31. Corley MJ, Dye C, D’Antoni ML, et al. Comparative DNA Methylation Profiling Reveals an Immunoepigenetic Signature of HIV-related Cognitive Impairment. Sci Rep. 2016;6(January):1–13. https://doi.org/10.1038/srep33310
32. Yousif M, Rachida S, Taukobong S, et al. SARS-CoV-2 genomic surveillance in wastewater as a model for monitoring evolution of endemic viruses. Nat Commun. 2023;14(1). https://doi.org/10.1038/s41467-023-41369-5
33. Ladner JT, Sahl JW. Towards a post-pandemic future for global pathogen genome sequencing. PLOS Biol. 2023;21(8):e3002225. https://doi.org/10.1371/journal.pbio.3002225
34. Hoffmann SA, Diggans J, Densmore D, et al. Safety by design: Biosafety and biosecurity in the age of synthetic genomics. iScience. 2023;26(3):106165. https://doi.org/10.1016/j.isci.2023.106165
35. Orekhov SN, Yavorsky AN. Biological Threats and Biological Safety. Cour Kutafin Moscow State Law Univ. 2020;(5):60–73. https://doi.org/10.17803/2311-5998.2020.69.5.060-073
36. Bibby K. Metagenomic identification of viral pathogens. Trends Biotechnol. 2013;31(5):275–279. https://doi.org/10.1016/j.tibtech.2013.01.016
37. Munang’andu HM, Mugimba KK, Byarugaba DK, et al. Current advances on virus discovery and diagnostic role of viral metagenomics in aquatic organisms. Front Microbiol. 2017;8(MAR):1–11. https://doi.org/10.3389/fmicb.2017.00406
38. Ayginin AA, Pimkina E V., Matsvay AD, et al. The Study of Viral RNA Diversity in Bird Samples Using De Novo Designed Multiplex Genus-Specific Primer Panels. Adv Virol. 2018;2018. https://doi.org/10.1155/2018/3248285
39. Wylie KM, Wylie TN, Buller R, et al. Detection of viruses in clinical samples by use of metagenomic sequencing and targeted sequence capture. J Clin Microbiol. 2018;56(12). https://doi.org/10.1128/JCM.01123–18
40. Kattoor JJ, Mlalazi-Oyinloye M, Nemser SM, et al. Development of a Targeted NGS Assay for the Detection of Respiratory Pathogens including SARS-CoV-2 in Felines. Pathogens. 2024;13(4):1–10. https://doi.org/10.3390/pathogens13040335
41. Agudelo-Pérez S, Fernández-Sarmiento J, Rivera León D, et al. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: A systematic review. Front Pediatr. 2023;11(March):1–15. https://doi.org/10.3389/fped.2023.1011723
42. Deng X, Achari A, Federman S, et al. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol. 2020;5(3):443– 454. https://doi.org/10.1038/s41564-019-0637-9
43. Gwinn M, MacCannell D, Armstrong GL. Next-Generation Sequencing of Infectious Pathogens. JAMA. 2019;321(9):893–894. https://doi.org/10.1001/jama.2018.21669
44. Bird BH, Mazet JAK. Detection of Emerging Zoonotic Pathogens: An Integrated One Health Approach. Annu Rev Anim Biosci. 2018;6:121–139. https://doi.org/10.1146/annurev-animal-030117-014628
45. Oeschger TM, McCloskey DS, Buchmann RM, et al. Early Warning Diagnostics for Emerging Infectious Diseases in Developing into Late-Stage Pandemics. Acc Chem Res. 2021;54(19):3656–3666. https://doi.org/10.1021/acs.accounts.1c00383
46. Vashisht V, Vashisht A, Mondal AK, et al. Genomics for Emerging Pathogen Identification and Monitoring: Prospects and Obstacles. BioMedInformatics. 2023;3(4):1145–1177. https://doi.org/10.3390/biomedinformatics3040069
47. Evann E. Hilt and Patricia Ferrieri. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel). 2022;13:1566. https://doi.org/10.3390/genes13091566
48. Li N, Cai Q, Miao Q, et al. High-Throughput Metagenomics for Identification of Pathogens in the Clinical Settings. Small Methods. 2021;5(1):1–27. https://doi.org/10.1002/ smtd.202000792
49. Han S-Y. Clinical value of metagenomic next-generation sequencing in complicated infectious diseases. Zhongguo Dang Dai Er Ke Za Zhi. 2022;24(2):210–215. https://doi. org/10.7499/j.issn.1008-8830.2110064
50. Cummings LA, Kurosawa K, Hoogestraat DR, et al. Clinical next generation sequencing outperforms standard microbiological culture for characterizing polymicrobial samples. Clin Chem. 2016;62(11):1465–1473. https://doi.org/10.1373/clinchem.2016.258806
51. Chiang AD, Dekker JP. From the pipeline to the bedside: Advances and challenges in clinical metagenomics. J Infect Dis. 2020;221(3):S331–S340. https://doi.org/10.1093/infdis/jiz151
52. Vital JS, Tanoeiro L, Lopes-Oliveira R, et al. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules. 2022;12(5). https://doi.org/10.3390/biom12050691
53. Chiu CY, Miller SA. Clinical metagenomics. Nat Rev Genet. 2019;20(6):341–355. https://doi.org/10.1038/s41576-019-0113-7
54. Ditri ELZ and JW. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu Rev Pathol. 2019;14:319–338. https://doi.org/10.1146/annurev-pathmechdis-012418-012751
55. Esman A, Dubodelov D, Khafizov K, et al. Development and Application of Real-Time PCR-Based Screening for Identification of Omicron SARS-CoV-2 Variant Sublineages. Genes (Basel). 2023;14(6):1218. https://doi.org/https://doi.org/10.3390/genes14061218
56. Akimkin VG, Popova AY, Khafizov KF, et al. COVID-19: evolution of the pandemic in Russia.Report II: dynamics of the circulation of SARS-CoV-2 genetic variants. Zhurnal Mikrobiol Epidemiol i Immunobiol. 2022;99(4):381–396. https://doi.org/10.36233/0372-9311-295
57. Akimkin VG, Semenenko TA, Ugleva SV, et al. COVID-19 Epidemic Process and Evolution of SARS-CoV-2 Genetic Variants in the Russian Federation. Microbiol Res (Pavia). 2024;15(1):213–224. https://doi.org/10.3390/microbiolres15010015
58. Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, et al. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis. 2020;221(Suppl 3):S292–S307. https://doi.org/10.1093/infdis/jiz286
59. Hill V, Ruis C, Bajaj S, et al. Progress and challenges in virus genomic epidemiology. Trends Parasitol. 2021;37(12):1038–1049. https://doi.org/10.1016/j.pt.2021.08.007
60. Tang P, Croxen MA, Hasan MR, et al. Infection control in the new age of genomic epidemiology. Am J Infect Control. 2017;45(2):170–179. https://doi.org/10.1016/j.ajic.2016.05.015
61. Knyazev S, Hughes L, Skums P, et al. Epidemiological data analysis of viral quasispecies in the next-generation sequencing era. Brief Bioinform. 2021;22(1):96–108. https://doi.org/10.1093/bib/bbaa101
62. Medhasi S, Chantratita N. Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res. 2022;2022. https://doi.org/10.1155/2022/9710376
63. Troshina E.A., Yukina M.U., Nuraliyeva N.F., et al. Rol’ Genov Sistemy Hla: Ot Autoimmunnykh Zabolevaniy Do Covid-19. Problemy Endokrinologii. 2020;66(4):9–15. https://doi.org/10.14341/probl12470.
64. Zunec R. A review of HLA and COVID-19 association studies. Mol Exp Biol Med. 2020;3(2):25–30. https://doi.org/10.33602/mebm.3.2.3
65. Jandaghi A, Samiei A, Khaghanzadeh N. Human Leukocyte Antigen as a Predictor of COVID-19 Severity. Published online 1401.
66. Poland GA, Ovsyannikova IG, Jacobson RM. Personalized vaccines: The emerging field of vaccinomics. Expert Opin Biol Ther. 2008;8(11):1659–1667. https://doi.org/10.1517/14712598.8.11.1659
67. Al-Eitan LN, ElMotasem MFM, Khair IY, et al. Vaccinomics: Paving the Way for Personalized Immunization. Curr Pharm Des. 2024;30(13):1031–1047. https://doi.org/10.2174/0113816128280417231204085137
68. Akimkin V.G., Zverev V.V., Kirpichnikov M.P., et al. Biosafety: epidemiological, cellular, genetic and epigenetic aspects. Bulletin of the Russian Academy of Sciences. 2024;94 (3):286–297 https://doi.org/10.31857/S0869587324030127.
Review
For citations:
Akimkin V.G., Cherkashina A.S., Tyumentsev A.I., Tyumentseva M.A., Khafizov K.F., Petrov V.V., Semenenko T.A., Lebedeva Yu.L., Cherkashin E.A. Biotechnology in Genomic Surveillance. Status and development prospects. Epidemiology and Vaccinal Prevention. 2025;24(3):4-13. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-3-4-13