Preview

Epidemiology and Vaccinal Prevention

Advanced search

Human Blood Serum Banks in the System of Seroepidemiological Monitoring of Population Immunity

https://doi.org/10.31631/2073-3046-2025-24-3-14-24

Abstract

Relevance. Seroepidemiological studies aimed at assessing population immunity are a powerful tool for epidemiological surveillance, necessary for analyzing and predicting the epidemic situation in a country, the actual protection of various age and social groups from a particular infection, and monitoring the effectiveness of specific prevention programs. Despite the relative simplicity of serological testing, there are numerous issues related to the design of studies, systematic sampling biases, sensitivity and specificity of tests, and validation of results. To effectively solve the problems of monitoring and predicting the development of infections, including the so-called new and returning ones, adequate information support is required, the level of which is determined by the availability of a certified collection of biological material. In this regard, biobanks, which have been actively developing in most countries in recent years, are becoming an essential element of modern biomedical infrastructure.
Aim. To characterize the importance of human blood serum banks in the system of global monitoring of population immunity, evaluation of the effectiveness of vaccine prevention and adaptation of its strategy (or justification for correcting its strategy) in response to changes in the epidemiological situation.
Results and discussion. The National Association of Biobanks and Biobanking Specialists (NASBIO) has been established in Russia, whose activities are aimed at supporting the development and implementation of scientific and applied projects and programs using the resources and infrastructure of biobanks. Depending on the type of biomaterial and the directions of its subsequent use, biobanks are divided into nosooriented (research, clinical) and population-based, which play an important role in the system of prevention of infectious diseases. Using the infrastructure of the blood serum bank makes it possible to obtain information on the seroprevalence, effectiveness of specific prevention programs and the level of susceptibility of various age and social groups of the population to vaccine-controlled infections.
Conclusion. In the context of expanding the range of real and potential biological threats, the effective functioning of human blood serum banks creates additional opportunities for studying population immunity, contributing to an increase in the effectiveness of the seroepidemiological monitoring system for current infections among the population.

About the Authors

T. A. Semenenko
Gamaleya National Research Center for Epidemiology and Microbiology; I.M. Sechenov First Moscow State Medical University
Russian Federation

Tatyana A. Semenenko – Dr. Sci. (Med.), Professor, Chief Researcher; Professor, Department of Infectology and Virolog

Moscow

+7 499 190 72 56



V. A. Gushchin
Gamaleya National Research Center for Epidemiology and Microbiology; I.M. Sechenov First Moscow State Medical University; Lomonosov Moscow State University
Russian Federation

Vladimir A. Gushchin – Dr. Sci. (Biol.), Associate Professor, Head of the Epidemiology Department; Head of the Department of Medical Genetics; Senior Researcher, Department of Virology, Faculty of Biology

Moscow



Ya. V. Simakova
Gamaleya National Research Center for Epidemiology and Microbiology
Russian Federation

Yana V. Simakova – researcher, Gamaleya National Research Center for Epidemiology and Microbiology

Moscow



A. E. Potapkina
I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Anastasia E. Potapkina – Resident of the Department of Medical Genetics

Moscow

+7 963 636 81 40



T. I. Subbotina
I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Tatyana I. Subbotina – Associate Professor of the Department of Medical Genetics

Moscow

8 916 620 41 65



D. A. Kleymenov
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation
Russian Federation

Denis A. Kleymenov – Cand. Sci. (Biol.), Head of the Laboratory

Moscow



A. A. Pochtovy
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Andrey A. Pochtovy – Cand. Sci. (Biol.), Senior Researcher, Head of the Biotechnology; Associate Professor, Department of Medical Genetics
Laboratory

Moscow



A. L. Ginzburg
Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation; I.M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University)
Russian Federation

Alexander L. Ginzburg – Dr. Sci. (Biol.), Professor, Academician of the Russian Academy of Sciences, Director of Gamaleya National Research Center for Epidemiology and Microbiology; Head, Department of Infectology and Virology

Moscow



References

1. WHO Fact sheets: Immunization coverage. 2024. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/immunization-coverage Accessed: 30 May 2025

2. Global action plan and monitoring framework on infection prevention and control (IPC), 2024-2030. Available at: https://www.who.int/teams/integrated-health-services/infection-prevention-control/draft-global-action-plan-and-monitoring-framework-on-ipc Accessed: 30 May 2025

3. Namazova-Baranova L.S., Briko N.I., Feldblum I.V. Vaccines and immunoprophylaxis in the modern world: a guide for doctors. Moscow: Pediatrician, 2021. 646 p. (In Russ).

4. Decree of the Government of the Russian Federation dated March 29, 2021 No. 774-r «On approval of the action plan for the implementation of the Strategy for the Development of immunoprophylaxis of infectious diseases for the period up to 2035.» Available: https://www.garant.ru/products/ipo/prime/doc/400425985 / Accessed: 30 May 2025/ (In Russ).

5. Randolph H.E., Barreiro L.B. Herd immunity: understanding COVID-19. Immunity. 2020; 52(5): 737–741. DOI: 10.1016/j.immuni.2020.04.012

6. Popova A.Yu., Ezhlova E.B., Mel’nikova A.A. et al. Assessment of Population Immunity to SARS-CoV-2 Virus in the Rostov Region. Problems of Particularly Dangerous Infections]. 2020; 4:117–124. (In Russ). DOI: 10.21055/0370-1069-2020-4-117-124

7. Gerasimov AN, Voronin EМ, Melnichenko IR, et al. Methodology for Estimating the Basic Reproductive Number of Current Variants of the Virus SARS-CoV-2 .Epidemiology and Vaccinal Prevention. 2024; 23(4):1222 (In Russ.). https://doi:10.31631/2073-3046-2024-23-4-12-22

8. Akimkin VG, Semenenko TA, Ugleva SV, Dubodelov DV, et al. COVID-19 in Russia: Epidemiology and Molecular Genetic Monitoring. Annals of the Russian Academy of Medical Sciences. 2022;77(4):254–260. (in Russ). doi: https://doi.org/10.15690/vramn2121

9. Gushchin V.A., Manuilov V.A., Mazunina E.P., et al. Immunological memory as a basis for a wise vaccination strategy. A rationale for introducing a comprehensive seroepidemiological surveillance system in Russia. Bulletin of Russian State Medical University. 2017. № 5. С. 5-25.

10. Semenenko T.A., Selkova E.P., Gotvyanskaya T.P. et al. Indicators of immune status in specific and non-specific prevention of influenza in the elderly. Journal of Microbiology, Epidemiology and Immunobiology. 2005. No. 6. pp. 24–28.

11. Kochetova E.O., Shamsheva O.V., Polesco I.V., et al. Features of the formation of specific immunity after vaccination against viral hepatitis b in children and young people. The attending physician. 2023; 26 (6): 7-15. (In Russ). DOI:10.51793/OS.2023.26.6.001

12. Nikitina G.Yu., Orlova O.A., Semenenko A.V., et al. The effectiveness of vaccination of medical workers against hepatitis B. Sanitary doctor. 2023; 7: 439–447. (In Russ). DOI: 10.33920/med-08-2307-03

13. Feldblum I.V. Epidemiological surveillance of vaccine prevention. Medial. 2014; 3 (13): 37–55. (In Russ).

14. Semenenko Т. A. Immune response during vaccination against hepatitis В in persons with immunodeficiency conditions. Epidemiology and Vaccinal Prevention 2011; 1(56): 51–8. (In Russ.).

15. Briko N.I., Pokrovsky V.I. Epidemiology: Textbook. Moscow: GEOTAR-Media. 2017. 368 p. (In Russ).

16. Grzybowski A.M., Ivanov S. V. Cross-sectional (single-stage) research in healthcare. Science and Healthcare. 2015; 2: 5–18. (In Russ). DOI: 10.34689/SH.2015.17.2.001

17. Akimkin V.G., Semenenko T.A., Nikitina G.Yu. et al. Epidemiology of hepatitis B and C in health care institutions. Moscow. 2013. p. 216. (In Russ.).

18. Zuñiga M, Lagomarcino AJ, Muñoz S, et al. A cross sectional study found differential risks for COVID-19 seropositivity amongst health care professionals in Chile. J Clin Epidemiol. 2022;144:72–83. doi: 10.1016/j.jclinepi.2021.12.026.

19. Bulanov N.M., Bluess O.B., Munblit D.B., et al. Design of scientific research in medicine. Sechenovsky Bulletin. 2021; 12(1): 4–17. (In Russ). https://doi.org/10.47093/2218-7332.2021.12.1.4-17

20. Clapham H, Hay J, Routledge I, et al. Seroepidemiologic Study Designs for Determining SARS-COV-2 Transmission and Immunity. Emerg Infect Dis. 2020; 26(9):1978– 1986. doi: 10.3201/eid2609.201840.

21. Semenenko TA, Akimkin VG. Seroepidemiology in the surveillance of vaccine preventable diseases. Journal of microbiology, epidemiology and immunobiology. 2018; 95(2): 87-94. (In Russ.). DOI: https://doi.org/10.36233/0372-9311-2018-2-87-94

22. Wiens KE, Jauregui B, Arnold BF, et al. Collaboration on Integrated Biomarkers Surveillance. Building an integrated serosurveillance platform to inform public health interventions: Insights from an experts› meeting on serum biomarkers. PLoS Negl Trop Dis. 2022 Oct 6;16(10):e0010657. doi:10.1371/journal.pntd.0010657

23. Kennedy RB, Ovsyannikova IG, Thomas A, et al. Differential durability of immune responses to measles and mumps following MMR vaccination. Vaccine. 2019;37(13):1775–1784. doi:10.1016/j.vaccine.2019.02.030

24. Haralambieva IH, Kennedy RB, Ovsyannikova IG, et al. Current perspectives in assessing humoral immunity after measles vaccination. Expert Rev Vaccines. 2019 Jan;18(1):75-87. doi:10.1080/14760584.2019.1559063.

25. Methodological guidelines MU 3.1.2943-11 «Organization and conduct of serological monitoring of the state of collective immunity to infections controlled by means of specific prevention (diphtheria, tetanus, whooping cough, measles, rubella, mumps, polio, hepatitis B)». 2011. (In Russ.).

26. Brady AM, El-Badry E, Padron-Regalado E, et al. Serosurveillance for Measles and Rubella. Vaccines (Basel). 2024 Jul 22;12(7):816. doi: 10.3390/vaccines12070816

27. Kafatos G, Andrews N, McConway KJ, et al. Estimating seroprevalence of vaccine-preventable infections: is it worth standardizing the serological outcomes to adjust for different assays and laboratories? Epidemiol Infect. 2015 Aug;143(11):2269–78. doi: 10.1017/S095026881400301X

28. Smits GP, van Gageldonk PG, Schouls LM. et al. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin Vaccine Immunol. 2012 Mar;19(3):396–400. doi: 10.1128/CVI.05537-11.

29. Bykonia EN, Kleymenov DA, Mazunina EP, et al. Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against seven vaccine-preventable diseases. J Immunol Methods. 2023;512:113408. doi: 10.1016/j.jim.2022.113408.

30. Larremore DB, Fosdick BK, Bubar KM, et al. Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys. Elife. 2021;10:e64206. doi: 10.7554/eLife.64206.

31. Cutts FT, Hanson M. Seroepidemiology: an underused tool for designing and monitoring vaccination programmes in low- and middle-income countries. Trop Med Int Health. 2016; 21(9):1086–98. doi: 10.1111/tmi.12737

32. Haselbeck AH, Im J, Prifti K, Marks F, Holm M, Zellweger RM. Serology as a Tool to Assess Infectious Disease Landscapes and Guide Public Health Policy. Pathogens. 2022; 11(7):732. doi: 10.3390/pathogens11070732

33. Carter MJ, Mitchell RM, Meyer Sauteur PM, et al. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol. 2017;8:630. doi:10.3389/fimmu.2017.00630

34. Arnold BF, Scobie HM, Priest JW, Lammie PJ. Integrated Serologic Surveillance of Population Immunity and Disease Transmission. Emerg Infect Dis. 2018; 24(7):1188– 1194. doi: 10.3201/eid2407.171928.

35. Semenenko TA, Anan’ina YV, Boev BV, Gintsburg A.L. Banks of biological resources in the system of basic epidemiological and clinical studies. Annals of the Russian academy of medical sciences. 2011;10:5–9. (In Russ.)

36. Metcalf CJ, Farrar J, Cutts FT, et al. Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet. 2016;388(10045):728-30. doi: 10.1016/S0140-6736(16)30164-7.

37. Semenenko T.A. The role of the blood serum bank in the country’s biosafety system. Bulletin of Roszdravnadzor. 2010; 3: 55–58. (In Russ.)

38. Meshkov A. N., Yartseva O. Yu., Borisova A. L. et al. The concept of the national information platform of biobanks of the Russian Federation. Cardiovascular therapy and prevention. 2022;21(11):3417. (In Russ.) doi:10.15829/1728-8800-2022-3417.

39. ISBER. Available at: https://www.isber.org/page/about. Accessed: 13 April 2025

40. Hartman V, Matzke L, Watson PH. Biospecimen Complexity and the Evolution of Biobanks. Biopreserv Biobank. 2019 Jun;17(3):264–270. doi: 10.1089/bio.2018.0120

41. Harati MD, Williams RR, Movassaghi M, et al. An Introduction to Starting a Biobank. Methods Mol Biol. 2019;1897:7–16. doi: 10.1007/978-1-4939-8935-5_2

42. Abdaljaleel M, Singer EJ, Yong WH. Sustainability in Biobanking. Methods Mol Biol. 2019;1897:1-6. doi: 10.1007/978-1-4939-8935-5_1.

43. Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022 Sep;28(9):1773-1784. doi: 10.1038/s41591-022-01981-2.

44. Medina-Martínez JS, Arango-Ossa JE, Levine MF, et al. Isabl Platform, a digital biobank for processing multimodal patient data. BMC Bioinformatics. 2020; 21(1):549. doi: 10.1186/s12859-020-03879-7

45. De Souza YG, Greenspan JS. Biobanking past, present and future: responsibilities and benefits. AIDS. 2013; 27(3):303-12. doi: 10.1097/QAD.0b013e32835c1244.

46. Fedorova O.S., Kamenskikh E.M., Sokolova T.S., et al.Trends in clinical epidemiology in the 21st century: analytical report. Tomsk: Siberian State Medical University, 2022.- 76 p. (In Russ.)

47. Coppola L, Cianflone A, Grimaldi AM. et al. Biobanking in health care: evolution and future directions. J Transl Med. 2019; 17(1):172. doi: 10.1186/s12967-019-1922-3.

48. Reijs BL, Teunissen CE, Goncharenko N, et al. The Central Biobank and Virtual Biobank of BIOMARKAPD: A Resource for Studies on Neurodegenerative Diseases. Front Neurol. 2015; 6:216. doi: 10.3389/fneur.2015.00216

49. Somiari SB, Somiari RI. The Future of Biobanking: A Conceptual Look at How Biobanks Can Respond to the Growing Human Biospecimen Needs of Researchers. Adv Exp Med Biol. 2015; 864:11–27. doi: 10.1007/978-3-319-20579-3_2.

50. Kalinin R.S., Goleva O.V., Illarionov R.A., et al. Development of a biobank in the structure of scientific and diagnostic and treatment institutions and prospects for interregional integration. Cardiovascular Therapy and Prevention. 2022;21(11):3401. (In Russ.) https://doi.org/10.15829/1728-8800-2022-3401

51. Pokrovskaya M.S., Borisova A.L., Metelskaya V.A., et al. The role of biobanking in organizing large-scale epidemiological studies. Cardiovascular Therapy and Prevention. 2021;20(5):2958. (In Russ.) DOI: 10.15829/1728-8800-2021-2958

52. Sokolova T. S., Kamenskikh E. M., Boguta D. V., et al. Training in biobanking in the context of modern medical education. Cardiovascular Therapy and Prevention. 2022;21(11):3380. (In Russ.) doi:10.15829/1728-8800-2022-3380.

53. Anisimov S.V., Granstrem O.K., Meshkov A.N. et al. National association of biobanks and biobanking specialists: new community for promoting biobanking ideas and projects in Russia. Biopreservation and Biobanking. 2021;19 (1): 73-82. DOI: 10.1089/bio.2020.0049

54. Anisimov S. V., Akhmerov T. M., Balanovsky O. P., et al.Biobanking. National guidelines. Moscow: OOO «Izdatelstvo TRIUMF», 2022. – 308 p. (In Russ.)

55. Drapkina, O.M. Russian «National Association of Biobanks and Biobanking Specialists» – a tool for integrating Russian biobanks and increasing the efficiency of biomedical research. Cardiovascular Therapy and Prevention. 2020; 19 (6): 131–133. (In Russ.) DOI: 10.15829/1728-8800-2020-2757

56. Koshechkin SI, Odintsova VE, Karasev AV., et al. Clinical studies of the human microbiome. Strategies for applying methods and translating results into clinical practice: A review. Pediatrics. Consilium Medicum. 2024;1:15–24. (In Russ.) DOI: 10.26442/26586630.2024.1.202774].

57. Meshkov A. N., Yartseva O. Yu., Borisova A. L., et al. NASBIO. Concept of the national information platform of biobanks of the Russian Federation. Cardiovascular Therapy and Prevention. 2022;21(11):3417. (In Russ.) doi:10.15829/1728-8800-2022-3417.

58. Zohouri M, Ghaderi A. The Significance of Biobanking in the Sustainability of Biomedical Research: A Review. Iran Biomed J. 2020; 24(4):206–13. doi: 10.29252/ibj.24.4.206.

59. Rychnovská D. Anticipatory Governance in Biobanking: Security and Risk Management in Digital Health. Sci Eng Ethics. 2021;27(3):30. doi:10.1007/s11948-021-00305-w

60. Gushchin V.A., Lukashev A.N., Simakova Ya.V., Pochtovy A.A. Use of genetic and immunological methods for timely detection of biological threats. Study guide. Moscow, 2024, p.38. (In Russ.).

61. Roux J, Zeghidi M, Villar S, Kozlakidis Z. Biosafety and biobanking: Current understanding and knowledge gaps. Biosaf Health. 2021; 3(5):244–248. doi: 10.1016/j.bsheal.2021.06.003.

62. Eropkin M.Yu. Biobanks and their role in biosafety systems, healthcare, biotechnology, ecology and the “knowledge economy” [Internet resource]. Available at: http:// www.influenza.spb.ru/files/publications/ rii-epub-biobanks-2015.pdf. (In Russ.)

63. Korobko K.I. Population biobank as an element of national and biological security of the Russian Federation. National security / nota bene. 2019; 3. (In Russ.) DOI:10.7256/2454-0668.2019.3.30061


Review

For citations:


Semenenko T.A., Gushchin V.A., Simakova Ya.V., Potapkina A.E., Subbotina T.I., Kleymenov D.A., Pochtovy A.A., Ginzburg A.L. Human Blood Serum Banks in the System of Seroepidemiological Monitoring of Population Immunity. Epidemiology and Vaccinal Prevention. 2025;24(3):14-24. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-3-14-24

Views: 58


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)