Preview

Epidemiology and Vaccinal Prevention

Advanced search

Risk-Stratified Predictive Models of Pregnancy Loss

https://doi.org/10.31631/2073-3046-2025-24-3-83-93

Abstract

Relevance. Given the substantial prevalence of pregnancy loss (20-46 % of conceptions), there is an urgent need to establish risk-prediction models for miscarriage to facilitate targeted preventive interventions.
Aim. To identify predictors of miscarriage and to develop prognostic models of miscarriage development based on risk assessment.
Materials and methods. We conducted a case-control study involving 282 women: 152 cases of spontaneous pregnancy loss (≤21 weeks gestation) and 130 controls with term deliveries. The assessment protocol included: a standardized 77-item questionnaire, validated Russian version of the Perinatal Anxiety Screening Scale (PASS-R, 31 items). Laboratory analyses comprised: molecular biological methods: quantitative PCR analysis of vaginal microbiota, microbiological assays: oropharyngeal swabs with semi-quantitative microbial growth assessment, fecal bacteriological examination for dysbiosis. Statistical analysis was performed using R software (v4.3.1), incorporating: univariate and multivariate logistic regression, ROC curve analysis (AUC) for model performance evaluation.
Results and discussion. Multivariate analysis identified statistically significant predictors of pregnancy loss, enabling development of two predictive mathematical models with strong discriminatory capacity. Key risk factors included: socio-demographic predictors (maternal age ≥35 years (aOR = 11.1; 95 %CI:1.46–238; p = 0.043), leadership occupation (OR = 8.92; 95 %CI:2.93–31.6; p < 0.001). Protective factor: normal body mass index (18.6–25 kg/m2; OR = 0.03; 95 % CI:0.001–0.32; p = 0.008). Clinical-anamnestic factors: medically indicated abortion history (OR = 8.07; 95 % CI:1.50–55.8; p = 0.021), smoking during pregnancy (OR = 6.06; 95 % CI:1.45–33.4; p = 0.022). Microbiological markers: severe intestinal dysbiosis (OR = 9.51; 95 % CI:2.37–64.7; p = 0.005). The developed models demonstrated excellent predictive performance, with high sensitivity and specificity (AUC 0.86 and 0.79).
Conclusion. The developed pregnancy loss risk prediction models, incorporating comprehensive socio-demographic, clinical, and microbiological predictors, demonstrate high specificity for spontaneous abortion risk stratification (AUC 0.861 and 0.790). These models show potential for refinement, validation, and eventual clinical implementation.

About the Authors

O. V. Shirai
St. Elizabeth City Hospital
Russian Federation

Olga V. Shirai – Head of the Department-Epidemiologist

4, Vavilov street, Saint Petersburg, 195257

+7 (931) 213-83-94



B. I. Aslanov
North West State Medical University named after I.I. Mechnikov
Russian Federation

Batyrbek I. Aslanov – Dr. Sci. (Med.), Professor Head of department Epidemiology, Parasitology and Disinfectology

Saint Petersburg



S. V. Rishchuk
North West State Medical University named after I.I. Mechnikov
Russian Federation

Sergey V. Rishchuk – Dr. Sci. (Med.), associate professor, professor of Department Obstetrics and Gynecology named after S.N. Davydov

Saint Petersburg



S. E. Melnikova
North West State Medical University named after I.I. Mechnikov
Russian Federation

Svetlana E. Melnikova – Cand. Sci. (Med.), Associate Professor of Department Obstetrics and Gynecology named after S.N. Davydov

Saint Petersburg



References

1. van Smeden M, Reitsma JB, Riley RD, et al. Clinical prediction models: diagnosis versus prognosis. J Clin Epidemiol. 2021;132:142–145. doi: 10.1016/j.jclinepi.2021.01.009.

2. Luchinin AS. Prognostic models in medicine. Klinicheskaya onkogematologiya. Fundamental`ny`e issledovaniya i klinicheskaya praktika. 2023;16(1):27–36. (In Russ). doi: 10.21320/2500-2139-2023-16-1-27-36.

3. Mu F, Wang M, Zeng X, et al. A predictive model of pregnancy loss using pre-pregnancy endocrine and immunological parameters in women with abnormal glucose/lipidmetabolism and previous pregnancy loss. Endocrine. 2024;86(1):441–450. doi: 10.1007/s12020-024-03937-7.

4. Li M, Zhou R, Yu D, et al. A nomogram and risk stratification to predict subsequent pregnancy loss in patients with recurrent pregnancy loss. Hum Reprod. 2024;39(10):2221–2232. doi: 10.1093/humrep/deae181.

5. Al-Memar M, Bobdiwala S, Fourie H, et al. The association between vaginal bacterial composition and miscarriage: a nested case – control study. BJOG. 2020;127(2):264–274. doi: 10.1111/1471-0528.15972.

6. Potapov NN, Kudryavtseva EV, Kovalev VV. Mathematical modeling of pregnancy loss with normal embryo karyotype in the first trimester. Obstetrics, Gynecology and Reproduction. 2021;15(4):379–389. (In Russ). doi: 10.17749/2313-7347/ob.gyn.rep.2021.239.

7. Haddad Kh, Orazmuradov AA, Suleymanova ZhZh, et al. Pathogenetic aspects of missed pregnancy. Obstetrics and Gynecology. News. Views. Education. 2023;11(Suppl): 139–143. (In Russ). doi: 10.33029/2303-9698-2023-11-suppl-139-143.

8. Muche AA, Baruda LL, Pons-Duran C, et al. Prognostic prediction models for adverse birth outcomes: A systematic review. J Glob Health. 2024;14:04214. doi: 10.7189/jogh.14.04214.

9. Quenby S, Gallos ID, Dhillon-Smith RK, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397(10285):1658–1667. doi: 10.1016/S0140-6736(21)00682-6.

10. Akhmedov VA, Kasheva KA, Gaus OV. Intestinal microbiota and critical conditions. Medical Alphabet. 2020;(37):16–20. (In Russ). doi: 10.33667/2078-5631-2020-37-16-20.

11. Di Simone N, Santamaria Ortiz A, Specchia M, et al. Recent insights on the maternal microbiota: impact on pregnancy outcomes. Front Immunol. 2020;11:528202. doi: 10.3389/fimmu.2020.528202.

12. Koren O, Konnikova L, Brodin P, et al. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol. 2024;21(1):35–45. doi: 10.1038/s41575-023-00864-2.

13. Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72(4):772–786. doi: 10.1136/gutjnl-2022-328970.

14. Qi X, Yun C, Pang Y, et al. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. 2021;13(1):1–21. doi: 10.1080/19490976.2021.1894070.

15. Aliabadi T, Saberi EA, Motameni Tabatabaei A, et al. Antibiotic use in endodontic treatment during pregnancy: A narrative review. Eur J Transl Myol. 2022;32(4):10813. doi: 10.4081/ejtm.2022.10813.

16. Rishchuk SV, Kahiani EI. Endogenous infection in obstetrics and gynecology. Byulleten` Orenburgskogo nauchnogo centra UrO RAN. 2020;(3):47. (In Russ). doi: 10.24411/2304-9081-2020-13003.

17. Shmatova YuE, Razvarina IN, Gordievskaya AN. Maternal risk factors for a child’s health prior to and during pregnancy (results of long-term cohort monitoring in Vologda region). Health Risk Analysis. 2022;(3):143–159. (In Russ). doi: 10.21668/health.risk/2022.3.14.

18. Gupta P, Singh MP, Goyal K. Diversity of vaginal microbiome in pregnancy: deciphering the obscurity. Front Public Health. 2020;8:326. doi: 10.3389/fpubh.2020.00326.

19. Filipeva PV, Svistushkin VM, Kiryushchenkov PA, et al. Correction of chronic tonsillitis as a component of pre-pregnancy preparation for primary miscarriage. Fundamental and Clinical Medicine. 2024;9(4):82–94. (In Russ). doi: 10.23946/2500-0764-2024-9-4-82-94.

20. Rasmark Roepke E, Christiansen OB, Källén K, et al. Women with a history of recurrent pregnancy loss are a high-risk population for adverse obstetrical outcome: a retrospective cohort study. J Clin Med. 2021;10(2):179. doi: 10.3390/jcm10020179.


Review

For citations:


Shirai O.V., Aslanov B.I., Rishchuk S.V., Melnikova S.E. Risk-Stratified Predictive Models of Pregnancy Loss. Epidemiology and Vaccinal Prevention. 2025;24(3):83-93. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-3-83-93

Views: 35


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)