Immunological and Immunogenetic Aspects of Vaccination against Measles
https://doi.org/10.31631/2073-3046-2025-24-3-114-122
Abstract
Relevance. Measles meets the criteria for a disease that can be eradicated. However, it has not yet been possible to achieve sustainable elimination of this infection, and the duration of post-vaccination measles immunity is becoming an important issue.
Aim. To present in a review based on current literature data the features of the immune response to vaccination against measles.
Conclusion. Understanding the characteristics of post-vaccination and post-infection immunity, and finding a way to maintain lifelong immunity in vaccinated individuals, is an important task in achieving the goal of eliminating measles. Elimination of measles is still achievable, it requires increasing the coverage of vaccination and studying the features of the individual immune response to maintain population immunity. Keywords: measles, vaccination, immune response, immunogenetics, MMR, seronegativity, antibodies, HLA.
Keywords
About the Authors
V. I. FomichevRussian Federation
Vitalii I. Fomichev – Head of the Consultative and Diagnostic Center, Allergist-Immunologist
9, Professor Popov St., Saint-Petersburg, 197022
+ 7 (812) 670-01-11
S. M. Kharit
Russian Federation
Susanna M. Kharit – Dr. Sci. (Med.), Professor, Head of the Research Department of Vaccine Prevention and Post-Vaccination Pathology; Professor of the Department of Infectious Diseases in Children
9, Professor Popov St., Saint-Petersburg, 197022
+7 (812) 234-68-55
A. A. Vilnits
Russian Federation
Alla A. Vilnits – Dr. Sci. (Med.), Senior Researcher, Department of Vaccine Prevention and Post-Vaccination Pathology; Associate Professor, Department of Infectious Diseases in Children
9, Professor Popov St., Saint-Petersburg, 197022
+7 (812) 234-33-10
References
1. [World Health Organization. (2020). Measles and rubella strategic framework: 2021-2030]. Available at: https://iris.who.int/handle/10665/339801.
2. Gogoi M, Martin CA, Bird PW, et al. Risk of vaccine preventable diseases in UK migrants: A serosurvey and concordance analysis. Journal of Migration and Health. 2024;9:100217. doi.org/10.1016/j.jmh.2024.100217
3. Winter AK, Moss WJ. Possible Paths to Measles Eradication: Conceptual Frameworks, Strategies, and Tactics. Vaccines. 2024 Jul 22;12(7):814. doi.org/10.3390/vaccines12070814
4. Moss WJ, Griffin DE. What’s going on with measles? Levy DE, editor. Journal of Virology [Internet]. 2024;98(8). doi.org/10.1128/jvi.00758-24
5. Brown B, Fricke I, Imarogbe C, et al. Understanding the Measles Virus at 70 Years: From Cellular Mechanisms to Immunisation, 1954-2024. 2024 Jul 16. doi.org/10.32388/nggcj9.4
6. Crowcroft NS, Minta AA, Bolotin S, et al. The Problem with Delaying Measles Elimination. Vaccines [Internet]. 2024;12(7):813. doi.org/10.3390/vaccines12070813
7. Locke J, Marinkovic A, Hamdy K, et al. Routine pediatric vaccinations during the COVID-19 pandemic: A review of the global impact. World Journal of Virology [Internet]. 2023;12(5):256–61. doi.org/10.5501/wjv.v12.i5.256
8. Minta AA, Ferrari M, Antoni S, et al. Progress Toward Measles Elimination — Worldwide, 2000–2023. MMWR Morbidity and Mortality Weekly Report [Internet]. 2024;73(45):1036–42. doi.org/10.15585/mmwr.mm7345a4
9. Muscat M, Ben Mamou M, Reynen-de Kat C, et al. Progress and Challenges in Measles and Rubella Elimination in the WHO European Region. Vaccines [Internet]. 2024;12(6):696. doi.org/10.3390/vaccines12060696
10. Sanchez DJ. Measles virus: Continued outbreaks while striving for eradication. Virulence [Internet]. 2024;15(1). doi.org/10.1080/21505594.2024.2386022
11. Seither R, Yusuf OB, Dramann D, et al. Coverage with Selected Vaccines and Exemption from School Vaccine Requirements Among Children in Kindergarten — United States, 2022–23 School Year. MMWR Morbidity and Mortality Weekly Report [Internet]. 2023;72(45):1217–24. doi.org/10.15585/mmwr.mm7245a2
12. O sostoianii sanitarno-epidemiologicheskogo blagopoluchiia naseleniia v Rossiiskoi Federatsii v 2023 godu. State report. Moscow: Federal Service for the Oversight of Consumer Protection and Welfare, 2024. – 364 с. (In Russ). Available at: https://www.rospotrebnadzor.ru/upload/iblock/fbc/sd3prfszlc9c2r4xbmsb7o3us38nrvpk/Gosudarstvennyy-doklad-_O-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-Rossiyskoy-Federatsii-v-2023-godu_..pdf. Accessed: 15 Dec 2024. (In Russ).
13. [Measles and Rubella Global Update February 2025 This report is posted on the WHO Immunization data portal] https://immunizationdata.who.int/global?topic=Provisionalmeasles-and-rubella-data&location
14. European Centre for Disease Prevention and Control [Internet]: Measles and Rubella monthly report. Available at: https://measles-rubella-monthly.ecdc.europa.eu/. Accessed: 15 Dec 2024.
15. Patel MK, Orenstein WA. Classification of global measles cases in 2013–17 as due to policy or vaccination failure: a retrospective review of global surveillance data. The Lancet Global Health [Internet]. 2019;7(3):313–20. doi.org/10.1016/s2214-109x(18)30492-3
16. Toptygina AP, Andreev YuYu, Smerdova MA, et al. Sopostavlenie gumoral’nogo immunnogo otveta u vzroslyh, bol’nyh kor’yu, i privityh ot etoj infekcii. Infekciya i immunitet. 2021;11(3):517–22. (In Russ). doi.org/10.15789/2220-7619-chi-1396
17. Toptygina A.P., Andreev YU.YU., Smerdova M.A., et al. Formirovanie gumoral’nogo i kletochnogo immuniteta na korevuyu vakcinu u vzroslyh. Infekciya i immunitet. 2020;10(1):137–44. (In Russ). doi.org/10.15789/2220-7619-foh-1334
18. Nozdracheva AV, Rybin VV, Gricik AA, et al. Rasprostranennost’ antitel k virusam kori, krasnuhi i epidemicheskomu parotitu u voennosluzhashchih. Voenno-medicinskij zhurnal. 2018;339(1):66–70. (In Russ).
19. Toptygina AP, Smerdova MA, Naumova MA, et al. Vliyanie osobennostej populyacionnogo immuniteta na strukturu zabolevaemosti kor’yu i krasnuhoj. Infekciya i immunitet. 2018;8(3):341–8. (In Russ). doi.org/10.15789/2220-7619-2018-3-341-348
20. Song K, Lee JM, Lee EJ, et al. Control of a nosocomial measles outbreak among previously vaccinated adults in a population with high vaccine coverage: Korea, 2019. European Journal of Clinical Microbiology & Infectious Diseases [Internet]. 2022;41(3):455–66. doi.org/10.1007/s10096-021-04390-4
21. Bianchi FP, Stefanizzi P, Trerotoli P, et al. Sex and age as determinants of the seroprevalence of anti-measles IgG among European healthcare workers: A systematic review and meta-analysis. Vaccine [Internet]. 2022;40(23):3127–41. doi.org/10.1016/j.vaccine.2022.04.016
22. Kim CJ, Bae JY, Jun KI, et al. Risk of Absence of Measles Antibody in Healthcare Personnel and Efficacy of Booster Vaccination. Vaccines [Internet]. 2021;9(5):501. doi. org/10.3390/vaccines9050501
23. Conis E. Measles and the Modern History of Vaccination. Public Health Reports [Internet]. 2019;134(2):118–25. doi.org/10.1177/0033354919826558
24. Higgins DM, O’Leary ST. A World without Measles and Rubella: Addressing the Challenge of Vaccine Hesitancy. Vaccines [Internet]. 2024;12(6):694. doi.org/10.3390/vaccines12060694
25. Toptygina A, Grebennikov D, Bocharov G. Prediction of Specific Antibody- and Cell-Mediated Responses Using Baseline Immune Status Parameters of Individuals Received Measles–Mumps–Rubella Vaccine. Viruses [Internet]. 2023;15(2):524. doi.org/10.3390/v15020524
26. Di Pietrantonj C, Rivetti A, Marchione P, et al. Vaccines for measles, mumps, rubella, and varicella in children. Cochrane Database of Systematic Reviews [Internet]. 2021;2021(11). doi.org/10.1002/14651858.cd004407.pub5
27. Castiñeiras ACP, Sales AC, Picone C de M, et al. The decline of measles antibody titers in previously vaccinated adults: a cross-sectional analysis. Revista do Instituto de Medicina Tropical de São Paulo [Internet]. 2024;66. doi.org/10.1590/s1678-9946202466004
28. Wahl B, Pitzer VE. Expanded Programme on Immunization at 50 years: its legacy and future. The Lancet [Internet]. 2024;403(10441):2265–7. doi.org/10.1016/s0140-6736(24)00982-6
29. Gastañaduy PA, Goodson JL, Panagiotakopoulos L, et al. Measles in the 21st Century: Progress Toward Achieving and Sustaining Elimination. The Journal of Infectious Diseases [Internet]. 2021;224:420–8. doi.org/10.1093/infdis/jiaa793
30. Hughes SL, Bolotin S, Khan S, et al. The effect of time since measles vaccination and age at first dose on measles vaccine effectiveness – A systematic review. Vaccine [Internet]. 2020;38(3):460–9. doi.org/10.1016/j.vaccine.2019.10.090
31. Bianchi S, Gori M, Fappani C, et al. Characterization of Vaccine Breakthrough Cases during Measles Outbreaks in Milan and Surrounding Areas, Italy, 2017–2021. Viruses [Internet]. 2022;14(5):1068. doi.org/10.3390/v14051068
32. Haralambieva IH, Kennedy RB, Ovsyannikova IG, et al. Current perspectives in assessing humoral immunity after measles vaccination. Expert Review of Vaccines [Internet]. 2018;18(1):75–87. doi.org/10.1080/14760584.2019.1559063
33. Ghafoori F, Mokhtari-Azad T, Foroushani AR, et al. Assessing seropositivity of MMR antibodies in individuals aged 2–22: evaluating routine vaccination effectiveness after the 2003 mass campaign-a study from Iran’s National Measles Laboratory. BMC Infectious Diseases [Internet]. 2024;24(1). doi.org/10.1186/s12879-024-09593-6
34. Zibolenová J, Hudečková H, Chladná Z, et al. Quantification of Waning Immunity After Measles Vaccination—Evidence From a Seroprevalence Study. American Journal of Epidemiology [Internet]. 2023;192(8):1379–85. doi.org/10.1093/aje/kwad065
35. Quach HQ, Ratishvili T, Haralambieva IH, et al. Immunogenicity of a peptide-based vaccine for measles: a pilot evaluation in a mouse model. Scientific Reports [Internet]. 2024;14(1). doi.org/10.1038/s41598-024-69825-2
36. Bolotin S, Osman S, Hughes SL, et al. In Elimination Settings, Measles Antibodies Wane After Vaccination but Not After Infection: A Systematic Review and Meta-Analysis. The Journal of Infectious Diseases [Internet]. 2022;226(7):1127–39. doi.org/10.1093/infdis/jiac039
37. Schenk J, Abrams S, Theeten H, et al. Immunogenicity and persistence of trivalent measles, mumps, and rubella vaccines: a systematic review and meta-analysis. The Lancet Infectious Diseases [Internet]. 2021;21(2):286–95. doi.org/10.1016/s1473-3099(20)30442-4
38. Robert A, Suffel AM, Kucharski AJ. Long-term waning of vaccine-induced immunity to measles in England: a mathematical modelling study. The Lancet Public Health [Internet]. 2024;9(10):766–75. doi.org/10.1016/s2468-2667(24)00181-6
39. Woudenberg T, van Binnendijk R, Veldhuijzen I, et al. Additional Evidence on Serological Correlates of Protection against Measles: An Observational Cohort Study among Once Vaccinated Children Exposed to Measles. Vaccines [Internet]. 2019;7(4):158. doi.org/10.3390/vaccines7040158
40. Wang W, O’Driscoll M, Wang Q, et al. Dynamics of measles immunity from birth and following vaccination. Nature Microbiology [Internet]. 2024;9(7):1676–85. doi.org/10.1038/s41564-024-01694-x
41. Quach HQ, Chen J, Monroe JM, et al. The Influence of Sex, Body Mass Index, and Age on Cellular and Humoral Immune Responses Against Measles After a Third Dose of Measles-Mumps-Rubella Vaccine. The Journal of Infectious Diseases [Internet]. 2022;227(1):141–50. doi.org/10.1093/infdis/jiac351
42. Haralambieva IH, Chen J, Quach HQ, et al. Early B cell transcriptomic markers of measles-specific humoral immunity following a 3rd dose of MMR vaccine. Frontiers in Immunology [Internet]. 2024;15. doi.org/10.3389/fimmu.2024.1358477
43. Chan JCH, Leung D, Chan SM, et al. Seroepidemiology of Measles and Rubella Among Hong Kong Young Adults and the Humoral Responses of a Measles-Mumps-Rubella Booster Among Participants With Low Antibody Levels. The Journal of Infectious Diseases [Internet]. 2024;230(6):1367–75. doi.org/10.1093/infdis/jiae297
44. Kaaijk P, Wijmenga-Monsuur AJ, ten Hulscher HI ten, et al. Antibody Levels at 3-Years Follow-Up of a Third Dose of Measles-Mumps-Rubella Vaccine in Young Adults. Vaccines [Internet]. 2022;10(1):132. doi.org/10.3390/vaccines10010132
45. Lüthy IA, Kantor IN. Sarampión [Measles]. Medicina (B Aires). 2020;80(2):162-168.
46. Laganà A, Visalli G, Di Pietro A, et al. Vaccinomics and adversomics: key elements for a personalized vaccinology. Clinical and Experimental Vaccine Research [Internet]. 2024;13(2):105. doi.org/10.7774/cevr.2024.13.2.105
47. Omersel J, Karas Kuželički N. Vaccinomics and Adversomics in the Era of Precision Medicine: A Review Based on HBV, MMR, HPV, and COVID-19 Vaccines. Journal of Clinical Medicine [Internet]. 2020;9(11):3561. doi.org/10.3390/jcm9113561
48. Haslund MM, Sørensen JK, Graff Stensballe L. Genetics and measles, mumps and rubella vaccine response in childhood and adolescence—A systematic review. Scandinavian Journal of Immunology [Internet]. 2023;97(6). doi.org/10.1111/sji.13266
49. Leidere-Reine A, Kolesova O, Kolesovs A, et al. Seroprevalence of diphtheria and measles antibodies and their association with demographics, self-reported immunity, and immunogenetic factors in healthcare workers in Latvia. Vaccine: X [Internet]. 2022;10:100149. doi.org/10.1016/j.jvacx.2022.100149
50. Dudley MZ, Gerber JE, Budigan Ni H, et al. Vaccinomics: A scoping review. Vaccine [Internet]. 2023;41(14):2357–67. doi.org/10.1016/j.vaccine.2023.02.009
51. Heath EI, Rosenberg JE. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nature Reviews Urology [Internet]. 2020;18(2):93–103. doi.org/10.1038/s41585-020-00394-5
52. Kennedy RB, Ovsyannikova IG, Palese P, et al. Current Challenges in Vaccinology. Frontiers in Immunology [Internet]. 2020;11. doi.org/10.3389/fimmu.2020.01181
53. Brady AM, El-Badry E, Padron-Regalado E, et al. Serosurveillance for Measles and Rubella. Vaccines [Internet]. 2024;12(7):816. doi.org/10.3390/vaccines12070816
54. Griffin DE. Measles immunity and immunosuppression. Current Opinion in Virology [Internet]. 2021;46:9–14. doi.org/10.1016/j.coviro.2020.08.002
55. Smerdova MA, Toptygina AP, Andreev YuYu., et. al. Gumoral’nyj i kletochnyj immunitet k antigenam virusov kori i krasnuhi u zdorovyh lyudej. Infekciya i immunitet. 2019;9(3–4):607–11. (In Russ). doi.org/10.15789/2220-7619-2019-3-4-607-611
56. Kim YC, Nam H, Choi JY, et al. The third dose of measles-containing vaccine induces robust immune responses against measles in young seronegative healthcare workers who had previous two-dose measles vaccination. Journal of Infection and Public Health [Internet]. 2023;16(10):1643–9. doi.org/10.1016/j.jiph.2023.08.002
57. Wang L, Haralambieva IH, Ovsyannikova IG, et al. Associations of adaptive immune cell subsets with measles, mumps, and Rubella−Specific immune response outcomes. Heliyon [Internet]. 2023;9(12):e22998. doi.org/10.1016/j.heliyon.2023.e22998
58. Yentür SP, Demirbilek V, Gurses C, et al. Immune alterations in subacute sclerosing panencephalitis reflect an incompetent response to eliminate the measles virus. Meinl E, editor. PLOS ONE [Internet]. 2021;16(1):e0245077. doi.org/10.1371/journal.pone.0245077
59. Mamaeva TA, Zheleznova NV, Bichurina MA, et al. Ocenka vozrastnoj struktury bol’nyh kor’yu s pervichnym i vtorichnym immunnym otvetom za period 2010-2016 gg. v Rossijskoj Federacii. Infekciya i immunitet. 2020;10(4):717–28. (In Russ). doi.org/10.15789/2220-7619-eoa-1407
Review
For citations:
Fomichev V.I., Kharit S.M., Vilnits A.A. Immunological and Immunogenetic Aspects of Vaccination against Measles. Epidemiology and Vaccinal Prevention. 2025;24(3):114-122. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-3-114-122