Preview

Epidemiology and Vaccinal Prevention

Advanced search

Corynebacterium pseudodiphtheriticum: More Likely a Pathogen than a Probiotic?

https://doi.org/10.31631/2073-3046-2025-24-5-67-79

Abstract

Relevance. Corynebacterium pseudodiphtheriticum has recently been increasingly considered as an etiologic agent of inflammatory diseases of various localizations, despite the fact that it is part of the microbiota of various biotopes of the human body. According to the literature, non- diphtheria corynebacteria and, in particular, C. pseudodiphtheriticum, are characterized by a dual nature, which is manifested by the presence of not only pathogenic, but also beneficial properties for the human body. In this regard, an important task is to differentiate colonization and infection caused by C. pseudodiphtheriticum, which may become possible when studying the genetic structure and virulence phenotype that determine the pathogenic effect on the human body. 
Aims: analysis of data from a study of the genome structure and phenotype characterizing the pathogenic and beneficial potential of phylogenetically closely related clinical isolates of C. pseudodiphtheriticum and C. propinquum from the oropharyngeal mucosa of healthy people. 
Materials and methods. Strains of C. pseudodiphtheriticum SX2, SX3, SX6 and C.propinquum SX4 were identified by mass spectrometry. Their whole genome sequencing and search for genes of pathogenicity, resistance to antimicrobial drugs (AMP), synthesis of amino acids, vitamins and terpenes were carried out. Virulence was determined on the model of wax moth larvae Galleria mellonella, sensitivity to AMP – by disk diffusion method, amino acid production – by tandem mass spectrometry. 
Results and discussion. It was found that all the studied isolates contain a wide range of polyfunctional genes regulating metabolism, pathogenicity (adhesion, survival inside macrophages, biofilm formation, etc.), resistance to AMP, as well as the rpf2 gene encoding the transition of corynebacteria from commensalism to parasitism. All the studied strains are low-virulent, produce glycine and valine, isolates of C. pseudodiphtheriticum SX2, SX6 and C.propinquum SX4 – alanine. The studied strains did not have a complete match in the pheno- and genotype of resistance to AMP. C. pseudodiphtheriticum SX6 belongs to the MDR category, showing phenotypic resistance to benzylpenicillin, ciprofloxacin and rifampicin. 
Conclusions. Thus, the duality of the nature of closely related strains of C. pseudodiphtheriticum and C.propinquum is characterized by the presence of a close relationship between pathogenic and beneficial properties. The implementation of the pathogenic potential of these microorganisms in the absence of true pathogenicity genes can occur with the activation of genes presumably associated with pathogenicity. This suggests that caution is needed when evaluating C. pseudodiphtheriticum (C.propinquum) strains as potential probiotics, even if they have a wide range of beneficial properties, given their ability to switch from commensalism to parasitism.

About the Authors

G. G. Kharseeva
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Galina G. Kharseeva – Dr. Sci. (Med.), Professor, Head of the Departmentof Microbiology and Virology № 2



O. S. Shcherbataya
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Olga S. Shcherbataya – Senior Laboratory Assistant, Department of Microbiology and Virology № 2



E. L. Alutina
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Elvira L. Alutina – Associate Professor, Department of Microbiology and Virology № 2



V. V. Balakhnova
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Veronika V. Balakhnova – Associate Professor of the Department of Microbiology and Virology № 2



S. Yu. Tyukavkina
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Svetlana Yu. Tyukavkina – Associate Professor of the Department of Microbiology and Virology № 2



А. V. Chepusov
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Anna V. Chepusova  Associate Professor of the Department of Microbiology and Virology № 2



T. D. Gasretova
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Tatyana D. Gasretova – Associate Professor, Department of Microbiologyand Virology № 2



O. I. Sylka
Federal State Educational Institution of Higher Education «Rostov State Medical University» Ministry of Health of Russia
Russian Federation

Olga I. Sylka – Associate Professor, Department of Microbiology and Virology № 2



References

1. Andrade-Silva M, dos Santos LS, Mattos-Guaraldi AL. Corynebacterium pseudodiphtheriticum as etiologic agent of human infections worldwide: a review of case reports within the last 40 years (1983–2023). Braz. J. Microbiol. 2025;56:1929–7. doi.org/10.1007/s42770-025-01739-1.

2. Silva-Santana G, Silva CMF, Olivella JGB, et al. Worldwide survey of Corynebacterium striatum increasingly associated with human invasive infections, nosocomial outbreak, and antimicrobial multidrug-resistance, 1976–2020. Arch. Microbiol. 2021;203(5):1863–1880. doi.org/10.1007/S00203-021-02246-1.

3. Sugumaran R, Sistla S, Chavhan P, Deb AK. Corynebacterium amycolatum: an unusual cause of corneal ulcer. BMJ Case Rep. 2020; 13:e237818. doi:10.1136/bcr-2020-237818.

4. Wallet F, Vanagt S, Alaoui M, et al. An unusual case of native aortic endocarditis due to Corynebacterium pseudodiphtheriticum. New Microbiol. 2023;46(2):223–225.

5. Chrustek A, Dombrowska-Pali A, Olszewska-Słonina D, et al. Human milk microbiome from polish women giving birth via vaginal delivery-pilot study. Biology (Basel). 2025; 14(4): 332. doi.org/10.3390/BIOLOGY14040332.

6. Tran TH, Escapa IF, Roberts AQ, et al. Metabolic capabilities are highly conserved among human nasal-associated Corynebacterium species in pangenomic analyses. Preprint. bioRxiv. 2024;2023.06.05.543719. Published 2024 Aug 27. doi:10.1101/2023.06.05.543719.

7. Mangutov EO, Kharseeva GG, Podoynitsyna ОА, et al. Сorynebacterium spp : differences in pheno- and genotypic markers of pathogenicity of isolates from patients with inflammatory diseases of the respiratory tract and practically healthy individuals. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2023; 68 (10): 604–611 (in Russ). doi org/10 51620/0869-2084-2023-68-10-604-611.

8. Indumathi VA, Shikha R, Suryaprakash DR. Diphtheria-like illness in a fully immunised child caused by Corynebacterium pseudodiphtheriticum. Indian J Med Microbiol. 2014;32(4):443–445. doi:10.4103/0255-0857.142250.

9. Weil LM, Williams MM, Shirin T, et al. Investigation of a Large Diphtheria Outbreak and Cocirculation of Corynebacterium pseudodiphtheriticum Among Forcibly Displaced Myanmar Nationals, 2017-2019. J Infect Dis. 2021;224(2):318–325. doi:10.1093/infdis/jiaa729.

10. Gompelmann D, Kappes J, Heussel CP, Schnabel PA, Herth FJ. Corynebacterium pseudodiphtheriticum als Erreger einer schwerwiegenden Pneumonie bei sekundärem Immunglobulinmangel [Corynebacterium pseudodiphtheriticum causing severe pneumonia in secondary immunoglobulin deficiency]. Dtsch Med Wochenschr. 2011;136(48):2503–2506. doi:10.1055/s-0031-1297277.

11. Souza MC, dos Santos LS, Sousa LP, et al. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains. Antonie Van Leeuwenhoek. 2015;107(6):1387–1399. doi:10.1007/s10482-015-0433-3.

12. Ramos JN, Souza C, Faria YV, et al. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect Dis. 2019;19(1):672. Published 2019 Jul 29. doi:10.1186/s12879-019-4294-7.

13. Reddy BS, Chaudhury A, Kalawat U, Jayaprada R, Reddy G, Ramana BV. Isolation, speciation, and antibiogram of clinically relevant non-diphtherial Corynebacteria (Diphtheroids). Indian J Med Microbiol. 2012;30(1):52–57. doi:10.4103/0255-0857.93033.

14. Camello TC, Souza MC, Martins CA, et al. Corynebacterium pseudodiphtheriticum isolated from relevant clinical sites of infection: a human pathogen overlooked in emerging countries. Lett Appl Microbiol. 2009;48(4):458–464. doi:10.1111/j.1472-765X.2009.02553.x.

15. Mangutov EO, Alieva AA, Kharseeva GG., et al. Corynebacterium spp.: relationship of pathogenic properties and antimicrobial resistance. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2022; 67 (9): 519–524 (in Russ.). doi.org/10.51620/0869-2084-2022-67-9-519-524.

16. Moyano RO, Tonetti F R, Fukuyama K, et al. The Respiratory Commensal Bacterium Corynebacterium pseudodiphtheriticum as a Mucosal Adjuvant for Nasal Vaccines. Vaccines. 2023;11:611.

17. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012; 19(5):455–77. doi: 10.1089/cmb.2012.0021.

18. Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020;70(1):e102. doi: 10.1002/cpbi.102.

19. Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5. doi: 10.1093/bioinformatics/btt086.

20. Page AJ, Cummins CA, Hunt M, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31(22):3691–3. doi: 10.1093/bioinformatics/btv421.

21. Database оf virulence factоrs (VFDB). Available at: httр://www.mgc.ac.cn/VFs/. Accessed: 21.08.2025.

22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068–9. doi: 10.1093/bioinformatics/btu153.

23. Feldgarden M, Brover V, Haft DH, et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob Agents Chemother. 2019;63(11):e00483–19. doi:10.1128/AAC.00483-19.

24. Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 201835(6):1547–1549. doi: 10.1093/molbev/msy096.

25. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9. doi: 10.1093/molbev/msr121.

26. Mangutov EO, Kharseeva GG, Podoynitsyna OA, et al. Corynebacterium spp.: differences in pheno- and genotypic markers of pathogenicity of isolates from patients with inflammatory diseases of the respiratory tract and practically healthy individuals. Clinical laboratory diagnostics. 2023; 68(10) 604–612. (In Russ.).

27. Determination of susceptibility of microorganisms to antimicrobial drugs: clinical recommendations (EUCAST, 2024). Available at: httрs://www.antibiоtic.ru/library/eucasteucast-clinical-breakроints-bacteria-13-0-rus/. Accessed: 21.08.2025.

28. Larpin-Laborde S, Imran M, Bonaïti C, et al. Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol. 2011;57(8):651–60. doi: 10.1139/w11-050.

29. Dentice Maidana S, Ortiz Moyano R, Vargas JM, et al. Respiratory Commensal Bacteria Increase Protection against Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Infection. Pathogens. 2022;11(9):1063. Published 2022 Sep 19. doi:10.3390/pathogens11091063.

30. Roy S, Marla S, Praneetha DC. Recognition of Corynebacterium pseudodiphtheriticum by Toll-like receptors and up-regulation of antimicrobial peptides in human corneal epithelial cells. Virulence. 2015;6(7):716–721. doi:10.1080/21505594.2015.1066063.


Review

For citations:


Kharseeva G.G., Shcherbataya O.S., Alutina E.L., Balakhnova V.V., Tyukavkina S.Yu., Chepusov А.V., Gasretova T.D., Sylka O.I. Corynebacterium pseudodiphtheriticum: More Likely a Pathogen than a Probiotic? Epidemiology and Vaccinal Prevention. 2025;24(5):67-79. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-5-67-79

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)