Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Методы инактивации вирусов в технологии изготовления цельновирионных вакцин

https://doi.org/10.31631/2073-3046-2025-24-6-77-91

Аннотация

Актуальность. Исследование механизмов инактивации вирусов остается приоритетным направлением при разработке инактивированных цельновирионных вакцин. Критерии выбора подходящего инактиватора включают: полное устранение вирусной инфекционности и сохранение высокого уровня иммуногенности готового продукта.

Цель. Рассмотреть данные о ранее известных и новых перспективных инактивирующих агентах, используемых при разработке цельновирионных вакцин.

Заключение. Оптимальный выбор инактиватора зависит от множества факторов: природы вируса, требуемого уровня безопасности, технологичности производства и свойств готовой вакцины. Традиционно используемые формалин и бета-пропиолактон продолжают доминировать в производстве лицензированных вакцин. Экспериментальные вакцинные препараты, инактивированные перекисью водорода и физическими методами, показали высокий уровень иммуногенной активности на разных моделях лабораторных животных. Несмотря на позитивные результаты, внедрение нового инактивирующего агента требует значительных усилий и долгосрочных испытаний для подтверждения его эффективности, и безопасности.

Об авторах

М. С. Егорова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М. П. Чумакова РАН» (Институт полиомиелита)
Россия

Егорова Мария Сергеевна, к. б. н., старший научный сотрудник лаборатории геморрагических лихорадок

108819, Москва, поселение Московский, поселок Института полиомиелита, домовладение 8, корпус 1

+7 (977) 354-16-19



С. С. Курашова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М. П. Чумакова РАН» (Институт полиомиелита)
Россия

Светлана Сергеевна Курашова  – к. м. н., ведущий научный сотрудник лаборатории геморрагических лихорадок 

Москва

+7 (965) 309-32-41



А. Н. Ветрова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М. П. Чумакова РАН» (Институт полиомиелита)
Россия

Анна Николаевна Ветрова  – младший научный сотрудник лаборатории геморрагических лихорадок 

Москва 

+7 (915) 273-60-28



Т. К. Дзагурова
ФГАНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М. П. Чумакова РАН» (Институт полиомиелита)
Россия

Тамара Казбековна Дзагурова  – д. м. н., заведующая лаборатории геморрагических лихорадок

Москва

+7 (926) 446-09-60



Список литературы

1. Salmon D.E., Smith T. On a new method of producing immunity from contagious diseases. Am Vet Rev. 1886. Vol.10. P. 63–69.

2. Wright A.E., Semple D. Remarks on vaccination against typhoid fever. British medical journal.1897. Vol.1. P. 256.

3. Haffkine W.M. Protective inoculation against plague and cholera. BMJ. 1899. Vol. 1. P. 35–36.

4. Weller T.H., Robbins F.C., Enders J.F. Cultivation of poliomyelitis virus in cultures of human foreskin and embryonic tissues. Proceedings of the Society for Experimental Biology and Medicine. 1949. Vol. 72, №. 1. P. 153–155.

5. Enders J.F., Weller T.H., Robbins F.C. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science. 1949. Vol.109, №. 2822. P. 85–87.

6. Salk J.E., Bennett B.L., Lewis L.J., et al. Studies in human subjects on active immunization against poliomyelitis: 1. A preliminary report of experiments in progress. Journal of the American Medical Association. 1953. Vol.151, №. 13. P.1081–1098.

7. Wodi A.P., Morelli V. Principles of Vaccination. In: Epidemiology and Prevention of Vaccine-Preventable Diseases. 14th edition. Washington, DC: Public Health Foundation, Centers for Disease Control and Prevention; 2021. P. 225–238.

8. Hess R.D., Weber F., Watson K. Regulatory, biosafety and safety challenges for novel cells as substrates for human vaccines. Vaccine. 2012. Vol. 30, №. 17. P. 2715–2727.

9. Barrett P.N., Mundt W., Kistner O., et al. Vero cell platform in vaccine production: moving towards cell culture-based viral vaccines. Expert review of vaccines. 2009. Vol. 8, №. 5. P. 607–618.

10. Delrue I., Verzele D., Madder A., et al. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert review of vaccines. 2012. Vol. 11, №. 6. P. 695–719.

11. Budowsky E.I., Bresler S.E., Friedman E.A., et al. Principles of selective inactivation of viral genome: I. UV-induced inactivation of influenza virus. Archives of virology.1981. Vol. 68, №. 3-4. P. 239–247.

12. Nims R.W, Plavsic M. Polyomavirus inactivation–a review. Biologicals. 2013. Vol. 41, №. 2. P. 63–70.

13. Madhusudana S.N., Shamsundar R., Seetharaman S. In vitro inactivation of the rabies virus by ascorbic acid. International journal of infectious diseases. 2004. Vol. 8, №. 1. P. 21–25.

14. Михалишин Д. В., Михалишин В. В., Гочмурадов Ы. М. и др. Инактивация вируса ящура для изготовления вакцин. Ветеринария сегодня. 2023. Т. 12, №. 2. С. 164–170.

15. Sundaram A., Ewing D., Blevins M., et al. Comparison of purified psoralen-inactivated and formalin-inactivated dengue vaccines in mice and nonhuman primates. Vaccine. 2020. Vol. 38, №. 17. P. 3313–3320.

16. Amanna I., Raué H., Slifka M. Development of a new hydrogen peroxide–based vaccine platform. Nature medicine. 2012. Vol. 18, №. 6. P. 974–979.

17. Abolaban F.A., Djouider F.M. Gamma irradiation-mediated inactivation of enveloped viruses with conservation of genome integrity: Potential application for SARS-CoV-2 inactivated vaccine development. Open Life Sciences. 2021. Vol. 16, №. 1. P. 558–570.

18. King A.M., Underwood B.O., McCahon D., et al. Biochemical identification of viruses causing the 1981 outbreaks of foot and mouth disease in the UK. Nature. 1981. Vol 293, №. 5832. P. 479–480.

19. Beck E, Strohmaier K. Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination. Journal of virology.1987. Vol.61, №. 5. P. 1621– 1629.

20. Patil P.K., Suryanarayana V., Bist P., et al. Integrity of GH-loop of foot-and-mouth disease virus during virus inactivation: detection by epitope specific antibodies. Vaccine. 2002. Vol. 20, №. 7-8. P. 1163–1168.

21. Plotkin S.L., Plotkin S.A. A short history of vaccination. Vaccines. 2004. Vol 5. P. 1–16.

22. Smorodintsev A.A., Ilyenko V.I. Results of laboratory and epidemiological study of vaccination against tick-borne encephalitis. In: Libíková H Biology of viruses of the tickborne encephalitis complex. Smolenice; 1969. P. 332–343.

23. Sanders B., Koldijk M., Schuitemaker H. Inactivated viral vaccines. In: Vaccine analysis: strategies, principles, and control. Berlin: Heidelberg Springer; 2014. P. 45–80.

24. Sergeev V.A., Nepoklonov E.A., Aliper T.I. Viruses and viral vaccines. M.: Biblioteka; 2007.

25. Brown F. Review of accidents caused by incomplete inactivation of viruses. Developments in biological standardization. 1993. Vol. 81. P. 103–107.

26. Ткаченко Е. А. Ишмухаметов А. А., Дзагурова Т. К. и др. Разработка экспериментально-промышленной технологии производства вакцины для профилактики геморрагической лихорадки с почечным синдромом. Ремедиум. Журнал о российском рынке лекарств и медицинской технике. 2015. №. 6. P. 47–54.

27. Martín J., Crossland G., Wood D. J., et al. Characterization of formaldehyde-inactivated poliovirus preparations made from live attenuated strains. Journal of general virology. 2003. Vol. 84, №. 7. P. 1781–1788.

28. Bayer L., Fertey J., Ulbert S., et al. Immunization with an adjuvanted low-energy electron irradiation inactivated respiratory syncytial virus vaccine shows immunoprotective activity in mice. Vaccine. 2018. Vol. 36, №. 12. P. 1561–1569.

29. Курашова С. С. Оценка эффективности адъювантов различного происхождения, методов инактивирования вирусов и контроля специфической активности хантавирусных вакцинных препаратов: Дис. канд. мед. наук. Москва; 2021. Доступно по: https://www.chumakovs.ru/uploads/dissovet/kurashova_disser.pdf. Ссылка активна на 12 октября 2025.

30. Егорова М. С., Курашова С. С., Дзагурова Т. К. и др. Влияние инактивирующих вирус агентов на иммуногенность вакцин против геморрагической лихорадки с почечным синдромом. Биотехнология. 2020. Т. 36, №2. С. 64–73.

31. Курашова С. С. Егорова М. С., Баловнева М. В. и др. Сравнение физических и химических инактиваторов при разработке технологии создания вакцины на основе вируса Пуумала. Эпидемиология и вакцинопрофилактика. 2024. Т. 23, №. 4. С. 34–43.

32. Srivastava A.K., Putnak J.R., Lee S. H., et al. A purified inactivated Japanese encephalitis virus vaccine made in Vero cells. Vaccine. 2001. Vol. 19, №. 31. P. 4557–4565.

33. Чумаков М. П. Львов Д. К., Сарманова Е. С. и др. Сравнительное изучение эпидемиологической эффективности прививок культуральной и мозговой вакциной против клещевого энцефалита. Вопросы вирусологии. 1963. Т. 3. С.307–315.

34. Piniaeva A., Ignatyev G., Kozlovskaya L., et al. Immunogenicity and safety of inactivated Sabin-strain polio vaccine “PoliovacSin”: Clinical trials Phase I and II. Vaccines. 2021. Vol. 9, №. 6. P. 565.

35. Twomey T., Newman J., Burrage T., et al. Structure and immunogenicity of experimental foot-and-mouth disease and poliomyelitis vaccines. Vaccine. 1995. Vol.13, №16. P.1603–1610.

36. Delgado M.F., Coviello S., Monsalvo A. C., et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 2009. V. 15. P. 34–41.

37. Flipse J., Wilschut J., Smit J.M. Molecular mechanisms involved in antibody-dependent enhancement of Dengue virus infection in humans. Traffic. 2013. V. 14. P. 25–35

38. Offit P. A. The Cutter incident, 50 years later. New England Journal of Medicine. 2005. Vol 352, №. 14. P. 1411–1412.

39. Cooper C.L., Davis H.L., Morris M.L., et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004. Vol. 22, №. 23-24. P. 3136–3143.

40. Reisler R.B., Danner D.K., Gibbs P.H. Immunogenicity of an inactivated Japanese encephalitis vaccine (JE-VAX) in humans over 20 years at USAMRIID: using PRNT50 as an endpoint for immunogenicity. Vaccine. 2010. Vol. 28, №. 12. P. 2436–2441.

41. Fukushima S., Kiyohara T., Ishii K., et al. Immunogenicity of aluminum-adsorbed hepatitis A vaccine (Havrix®) administered as a third dose after primary doses of Japanese aluminum-free hepatitis A vaccine (Aimmugen®) for Japanese travelers to endemic countries. Vaccine. 2017. Vol. 35, №. 47. P. 6412–6415.

42. Choi Y, Ahn C.J., Seong K.M., et al. Inactivated Hantaan virus vaccinederived from suspension culture of Vero cells.. Vaccine. 2003. Vol. 21, №17–18. P. 1867–1873.

43. van Wezel A.L., van Steenis G., van der Marel P., et al. Inactivated poliovirus vaccine: current production methods and new developments. Reviews of infectious diseases. 1984. P. 335–340.

44. Goncharova E., Ryzhikov E., Poryvaev V., et al. Intranasal immunization with inactivated tick-borne encephalitis virus and the antigenic peptide 89–119 protects mice against intraperitoneal challenge. International Journal of Medical Microbiology. 2006. Vol. 296. P.195–201.

45. Справочник лекарственных средств. Доступно по: https://www.vidal.ru/. Ссылка активна на 6 октября 2025.

46. Dembinski J.L., Hungnes O., Hauge A.G., et al. Hydrogen peroxide inactivation of influenza virus preserves antigenic structure and immunogenicity. Journal of virological methods. 2014. Vol. 207. P. 232–237.

47. David S.C., Lau, J., Singleton, E.V., et al. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine. 2017. Vol. 35, №. 7. P.1071–1079.

48. McArthur M.A., Holbrook M.R. Japanese encephalitis vaccines. Journal of bioterrorism & biodefense. 2011. P. 1002.

49. Французская транснациональная фармацевтическая компания Санофи. Досупно на: https://www.sanofi.com/. Ссылка активна на 6 октября 2025.

50. Швейцарская транснациональная фармацевтическая компания Новартис. Досупно на: https://www.novartis.com/. Ссылка активна на 6 октября 2025.

51. Abd-elghaffar A.A., Ali A.E., Boseila A.A., et al. Inactivation of rabies virus by hydrogen peroxide. Vaccine. 2016. Vol. 34, №. 6. P. 798–802.

52. Johnson R.F., Kurup D., Hagen K.R., et al. An inactivated Rabies virus-based Ebola Vaccine, FILORAB1, adjuvanted with glucopyranosyl lipid A in stable emulsion confers complete protection in nonhuman primate challenge models. The Journal of infectious diseases. 2016. Vol. 214, №. 3. P. 342–354.

53. Jin L., Li Z., Zhang X., et al. CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Human vaccines & immunotherapeutics. 2022. Vol.18, №. 6. P. 2096970.

54. Sir Karakus G., Tastan C., Dilek Kancagi D., et al. Preclinical efficacy and safety analysis of gamma-irradiated inactivated SARS-CoV-2 vaccine candidates. Scientific reports. 2021. Vol.11, №. 1. P. 5804.

55. Zhugunissov K., Zakarya K., Khairullin B., et al. Development of the inactivated QazCovid-in vaccine: protective efficacy of the vaccine in Syrian hamsters. Frontiers in microbiology. 2021. Vol. 12. P.720437.

56. Khan A., Shin O.S., Na J., et al. A systems vaccinology approach reveals the mechanisms of immunogenic responses to hantavax vaccination in humans. Scientific reports. 2019. Vol.9, №. 1. P. 4760.

57. Lee H.W., Chu Y.K., Tkachenko E., et al. Vaccines against HFRS. In: Emergence and Control of Rodent-Borne Viral Diseases. France: Elsevier; 1999. P.147–156.

58. Ткаченко, Е.А. Дзагурова Т.К., Набатников П.А. Разработка экспериментальной вакцины против геморрагической лихорадки с почечным синдромом. Медицинская вирусология. 2009. Vol. XXVI. P. 194–196.]

59. Tkachenko E.A., Dzagurova T.K., Mikhailov M.I. Hantavirus strains for manufacturing of vaccine against HFRS. Patent 2423520. 10.07.2011 Available at: https://patents.google.com/patent/RU2423520C1/ru. Accessed: 01.10.2025.

60. Dzagurova T.K., Siniugina A.A., Ishmukhametov A.A., et al. Pre-clinical studies of inactivated polyvalent HFRS vaccine. Frontiers in cellular and infection microbiology. 2020. Vol.10. P. 545372.

61. Schmidt A.C., Lin L., Martinez L.J., et al. Phase 1 randomized study of a tetravalent dengue purified inactivated vaccine in healthy adults in the United States. The American journal of tropical medicine and hygiene. 2017. Vol. 96, №. 6. P. 1325.

62. Marzi A., Halfmann P., Hill-Batorski L., et al. An Ebola whole-virus vaccine is protective in nonhuman primates. Science. 2015. Vol. 348, №. 6233. P. 439–442.

63. Hartman F.W., LoGrippo G.A. Beta-propiolactone in sterilization of vaccines, tissue grafts, and plasma. Journal of the American Medical Association. 1957. Vol. 164, №. 3. P. 258–260.

64. Lawrence S. A. Beta-propiolactone and aziridine: their applications in organic synthesis and viral inactivation. Chimica oggi. 1999. Vol. 17, №. 3-4. P. 51–54.

65. Colburn N.H., Richardson R.G., Boutwell R.K. Studies of the reaction of β-propiolactone with deoxyguanosine and related compounds. Biochemical pharmacology. 1965. Vol. 14, №. 7. P. 1113–1118.

66. Mate U., Solomon J.J., Segal A. In vitro binding of β-propiolactone to calf thymus DNA and mouse liver DNA to form 1-(2-carboxyethyl) adenine. Chemico-biological interactions. 1977. Vol.18, №. 3. P. 327–336.

67. Yang J., Gao J., Zhang Q. Development of gas chromatography for determination of β-propiolactone (BPL) content and analysis of BPL hydrolysis. Chinese Journal of Biologicals. 2010. Vol. 3. P. 323–332.

68. Perdiz D., Gróf P., Mezzina M., et al. Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells: possible role of Dewar photoproducts in solar mutagenesis. Journal of Biological Chemistry. 2000. Vol. 275, №. 35. P. 26732–26742.

69. Bonnafous P., Nicolaï M.C., Taveau J.C. Treatment of influenza virus with beta-propiolactone alters viral membrane fusion. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2014. Vol. 1838, № 1. P. 355–363.

70. Sun Z., Yu Y., Wang W., et al. Studies on the purified inactivated epidemic hemorrhagic fever vaccine. Clinical trial of type 1 EHF vaccine in volunteers. Abstract of 2nd international conference on HFRS; Beijing; 1992. P. 109–110.

71. Kozlovskaya L.I., Piniaeva A.N., Ignatyev G.M., et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerging microbes & infections. 2021. Vol. 10, №. 1. P. 1790–1806.

72. Statler V.A., Albano F.R., Airey J., et al. Immunogenicity and safety of a quadrivalent inactivated influenza vaccine in children 6–59 months of age: a phase 3, randomized, noninferiority study. Vaccine. 2019. Vol. 37, №. 2. P. 343–351.

73. Jin L., Li Z., Zhang X., et al. CoronaVac: A review of efficacy, safety, and immunogenicity of the inactivated vaccine against SARS-CoV-2. Human vaccines & immunotherapeutics. 2022. Vol. 18, №. 6. P. 2096970.

74. Valko M., Leibfritz D., Moncol J., et al. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology. 2007. Vol.39, №. 1. P. 44–84.

75. Linley E., Denyer S.P., McDonnell G., et al. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of antimicrobial Chemotherapy. 2012. Vol. 67, №. 7. P. 1589–1596.

76. Sykes G. Disinfection and Sterilization. 2nd Edition. London: E & F.N. Spon; 1965.

77. Termini J. Hydroperoxide-induced DNA damage and mutations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2000. Vol. 450, №. 1-2. P. 107–124.

78. Pinto A.K., Richner J.M., Poore E.A., et al. A hydrogen peroxide-inactivated virus vaccine elicits humoral and cellular immunity and protects against lethal West Nile virus infection in aged mice. Journal of virology. 2013. Vol.87, №. 4. P. 1926–1936.

79. Poore E.A., Slifka D.K., Raué H.P., et al. Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine. 2017. Vol. 35, №. 2. P. 283–292.

80. Barrett P.N., Terpening S.J., Snow D., et al. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert review of vaccines. 2017. Vol. 16, №. 9. P. 883–894.

81. Quintel B.K., Thomas A., DeRaad D.E., et al. Advanced oxidation technology for the development of a next-generation inactivated West Nile virus vaccine. Vaccine. 2019. Vol. 37, №. 30. P. 4214–4221.

82. Walker J.M., Raué H.P., Slifka M.K. Characterization of CD8+ T cell function and immunodominance generated with an H2O2-inactivated whole-virus vaccine. Journal of virology. 2012. Vol. 86, №. 24. P. 13735–13744.

83. Wolf A.M., Mason J., Fitzpatrick W.J., et al. Ultraviolet irradiation of human plasma to control homologous serum jaundice. Journal of the American Medical Association. 1947. Vol. 135, №. 8. P. 476–477.

84. Mitchell D.L. The relative cytotoxicity of (6–4) photoproducts and cyclobutane dimers in mammalian cells. Photochemistry and photobiology. 1988. Vol. 48, №. 1. P. 51–57.

85. Bennett C.J., Webb M., Willer D.O., et al. Genetic and phylogenetic characterization of the type II cyclobutane pyrimidine dimer photolyases encoded by Leporipoxviruses. Virology. 2003. Vol. 315, №. 1. P. 10–19.

86. Lytle C.D., Sagripanti J.L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. Journal of virology. 2005. Vol. 79, №. 22. P. 14244–14252.

87. Cobb T.C. UV-C decontamination: NASA, prions, and future perspectives. Applied Biosafety. 2016. Vol. 21, №. 2. P. 84–88.

88. Tseng C.C, Li C.S. Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosol Science and Technology. 2005. Vol.39, №. 12. P.1136–1142.

89. Miller R.L., Plagemann P.G. Effect of ultraviolet light on mengovirus: formation of uracil dimers, instability and degradation of capsid, and covalent linkage of protein to viral RNA. Journal of virology. 1974. Vol. 13, №. 3. P. 729–739.

90. Subasinghe H.A., Loh P.C. Reovirus cytotoxicity: some properties of the UV-irradiated reovirus and its capsid proteins. Archiv für die gesamte Virusforschung. 1972. Vol.39, №.1-3. P.172–189.

91. Belovickis J., Kurylenka A., Murashko V. Effect of open ultraviolet germicidal irradiation lamps on functionality of excimer lasers used in cornea surgery. International journal of ophthalmology. 2017. Vol.10. P.1474.

92. Vaidya V., Dhere R., Agnihotri S., et al. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum. Vaccine. 2018. –Vol.36, №. 29. P. 4215–4221.

93. Prescott J., Ye C., Sen G., et al. Induction of innate immune response genes by Sin Nombre hantavirus does not require viral replication. Journal of virology. 2005. Vol.79, №. 24. P. 15007–15015.

94. Buranda T., Wu Y., Perez D., et al. Recognition of decay accelerating factor and αvβ3 by inactivated hantaviruses: Toward the development of high-throughput screening flow cytometry assays. Analytical biochemistry. 2010. Vol. 402, №. 2. P. 151–160. 3

95. Goldstein M.A., Tauraso N.M. Effect of formalin, β-propiolactone, merthiolate, and ultraviolet light upon influenza virus infectivity, chicken cell agglutination, hemagglutination, and antigenicity. Applied Microbiology. 1970. Vol. 19, № 2. P. 290–294.

96. Henning J., Meers J., Davies P.R. Exposure of rabbits to ultraviolet light-inactivated rabbit haemorrhagic disease virus (RHDV) and subsequent challenge with virulent virus. Epidemiology & Infection. 2005. Vol 133, №. 4. P. 731–735.

97. Sarzotti M., Dean T.A., Remington M., et al. Ultraviolet-light-inactivated Cas-Br-M murine leukemia virus induces a protective CD8+ cytotoxic T lymphocyte response in newborn mice. AIDS research and human retroviruses. 1994. Vol. 10, №. 12. P.1695–1702.

98. Vanhee M., Delputte P.L., Delrue I., et al. Development of an experimental inactivated PRRSV vaccine that induces virus-neutralizing antibodies. Veterinary research. 2009. Vol. 40, №. 6.

99. Caillet-Fauquet P., Giambattista Di, Draps M., et al. Continuous-flow UVC irradiation: a new, effective, protein activity-preserving system for inactivating bacteria and viruses, including erythrovirus B19. Journal of virological methods. 2004. Vol. 118, №. 2. P. 131–139.

100. Wang J., Mauser A., Chao S., et al. Virus inactivation and protein recovery in a novel ultraviolet‐C reactor. Vox sanguinis. 2004. Vol.86, №. 4. P. 230–238.

101. Petricciani J., Sheets R., Griffiths, et al. Adventitious agents in viral vaccines: lessons learned from 4 case studies. Biologicals. 2014. Vol. 42, №. 5. P. 223–236.

102. Burke M., Augenstein L. A comparison of the effects of ultraviolet and ionizing radiations on trypsin activity and on its constituent amino acids. Biochemical Journal. 1969. Vol. 114, №. 3. P. 535–545.

103. Соловьев А. Г., Воробьева И. В., Сидорова О. П. Эпидемиология и профилактика бешенства в России: роль вакцины Кокав. Медицинская микробиология и иммунология. 2019. Т. 3. С.34–39.

104. Nims R.W., Gauvin G., Plavsic M. Gamma irradiation of animal sera for inactivation of viruses and mollicutes–a review. Biologicals. 2011. Vol. 39, №. 6. P. 370–377.

105. Sabbaghi A., Miri S., M., Keshavarz M., et al. Inactivation methods for whole influenza vaccine production. Reviews in medical virology. 2019. Vol. 29, №. 6. P.2074.

106. Smolko E.E., Lombardo J.H. Virus inactivation studies using ion beams, electron and gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2005. Vol. 236, №. 1-4. P. 249–253.

107. McCormick J.B., Mitchell S.W., Kiley M.P., et al. Inactivated Lassa virus elicits a non-protective immune response in rhesus monkeys. Journal of medical virology. 1992. Vol. 37, №. 1. P. 1–7.

108. Магсумов Р. З. Разработка технологии изготовления радиоинактивированной вакцины «Гаммавак-ВНИВИ» против болезни Ауески (псевдобешенства) и изучение ее эффективности в производственных условиях: Дис. канд. вет. наук. Казань; 2004. Доступно на: https://www.dissercat.com/content/razrabotka-tekhnologii-izgotovleniya-radioinaktivirovannoi-vaktsiny-gammavak-vnivi-protivbo?ysclid=mi4fdhxiqb736436664. Ссылка активна на 12 октября 2025.

109. David S.C., Lau J., Singleton E.V., et al. The effect of gamma-irradiation conditions on the immunogenicity of whole-inactivated Influenza A virus vaccine. Vaccine. 2017. Т. 35, №. 7. P. 1071–1079.

110. Marennikova S.S., Macevič G.R. Experimental study of the role of inactivated vaccine in two-step vaccination against smallpox. Bulletin of the World Health Organization. 1975. Vol. 52, №. 1. P.51.

111. Elliott L.H., McCormick J.B., Johnson K.M. Inactivation of Lassa, Marburg, and Ebola viruses by gamma irradiation. Journal of Clinical Microbiology. 1982. Vol. 16, №. 4. P. 704–708.

112. Furuya Y., Regner M., Lobigs M., et al. Effect of inactivation method on the cross-protective immunity induced by whole ‘killed’influenza A viruses and commercial vaccine preparations. Journal of General Virology. 2010. Vol. 91, №. 6. P. 1450–1460.

113. Grieb T., Forng R.Y., Brown R., et al. Effective use of gamma irradiation for pathogen inactivation of monoclonal antibody preparations. Biologicals. 2002. Vol.30, №.3. P. 207–216.

114. Hanson C.V., Riggs J.L., Lennette E.H. Photochemical inactivation of DNA and RNA viruses by psoralen derivatives. J Gen Virol. 1978. Vol. 40. P. 345–358.

115. Groene W.S., Shaw R.D. Psoralen preparation of antigenically intact noninfectious rotavirus particles. Journal of virological methods. 1992. Vol. 38, №. 1. P. 93–102.

116. Hanson C.V. Inactivation of viruses for use as vaccines and immunodiagnostic reagents. Medical Virology II Elsevier. 1983. P. 45–79.

117. Sutjipto S., Pedersen N.C., Miller C.J., et al. Inactivated simian immunodeficiency virus vaccine failed to protect rhesus macaques from intravenous or genital mucosal infection but delayed disease in intravenously exposed animals. Journal of virology. 1990. Vol. 64, №. 5. P. 2290–2297.

118. Watson A.J., Klanieki J., Hanson C.V. Psoralen/UV inactivation of HIV-1-infected cells for use in cytologic and immunologic procedures. AIDS research and human retroviruses. 1990. Vol. 6, №. 4. P. 503–513.

119. Wong M.L., Hsu M.T. Psoralen-cross-linking study of the organization of intracellular adenovirus nucleoprotein complexes. Journal of virology. 1988. Vol. 62, №. 4. P. 1227– 1234.

120. Swanstrom R., Hallick L.M., Jackson J., et al. Interaction of psoralen derivatives with the RNA genome of Rous sarcoma virus. Virology. 1981. Vol.113, №. 2. P. 613–622.

121. Maves R.C., Castillo Oré R.M., Porter K.R., et al. Immunogenicity of a psoralen-inactivated dengue virus type 1 vaccine candidate in mice. Clinical and Vaccine Immunology. 2010. Vol. 17, №. 2. P. 304–306.


Рецензия

Для цитирования:


Егорова М.С., Курашова С.С., Ветрова А.Н., Дзагурова Т.К. Методы инактивации вирусов в технологии изготовления цельновирионных вакцин. Эпидемиология и Вакцинопрофилактика. 2025;24(6):77-91. https://doi.org/10.31631/2073-3046-2025-24-6-77-91

For citation:


Egorova M.S., Kurashova S.S., Vetrova A.N., Dzagurova T.K. Methods for Virus Inactivation in the Production Technology of Whole Virion Vaccines. Epidemiology and Vaccinal Prevention. 2025;24(6):77-91. (In Russ.) https://doi.org/10.31631/2073-3046-2025-24-6-77-91

Просмотров: 15


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)