Preview

Эпидемиология и Вакцинопрофилактика

Расширенный поиск

Вакцины против полиомиелита: настоящее и будущее

https://doi.org/10.31631/2073-3046-2018-17-3-4-18

Полный текст:

Аннотация

В статье представлена история разработки и применения вакцин против полиомиелита, которая представляет собой пример эволюции вакцин под воздействием меняющейся эпидемиологической обстановки и социально-экономических факторов. Создание двух вакцин против полиомиелита – инактивированной вакцины Солка (ИПВ) и живой оральной вакцины Сейбина (ОПВ), каждая со своими преимуществами и недостатками, – числится в списке наиболее значимых достижений профилактической медицины прошлого века. За последние 50 лет они применялись в различных условиях, по разным схемам и в различных комбинациях. Это позволило добиться полной ликвидации полиомиелита почти во всех странах мира. Продолжение инициативы по ликвидации, возглавляемой ВОЗ, может в скором времени привести к полному прекращению циркуляции диких штаммов вируса. В таком случае полиовирус – как и вирус натуральной оспы – останется лишь в лабораториях. Однако остановить вакцинацию после прекращения циркуляции патогена, как было в случае с уничтожением вируса оспы, не представляется возможным. Вакцины против полиомиелита не потеряют своей актуальности в ближайшем будущем ввиду наличия выраженных различий в свойствах и эпидемиологических характеристиках этих двух вирусов. В статье приведены доводы в пользу необходимости поддержания высокого коллективного иммунитета против полиовирусов и разработки нового поколения вакцин. Кроме того, рассмотрены желаемые характеристики и новые технологии производства вакцин, которые могут найти применение в условиях полной ликвидации вируса.

 

Об авторах

К. М. Чумаков
Центра по оценке и исследованию биологических продуктов, FDA, Silver Spring
Соединённые Штаты Америки
доктор наук, сотрудник


А. А. Ишмухаметов
ФГБНУ «Федеральный научный центр исследований и разработки иммунобиологических препаратов им. М. П. Чумакова» РАН, Москва; ФГАОУ ВО Первый Московский государственный медицинский университет им. И. М. Сеченова МЗ России
Россия

чл.-корр. РАН, д. м. н., профессор Москва. генеральный директор ФГУП «Федеральный научный центр исследований и  разработки иммунологических препаратов им.  М.  П  Чумакова РАН» (2013 г.), заведующий кафедрой организации и  технологии производства иммунобиологических препаратов Института фармации и трансляционной медицины Сеченовского университета.

ID L-4482-2018



Список литературы

1. Baker AB. Bulbar poliomyelitis: its mechanism and treatment. Am J Med 1949; 6: 614–619.

2. Underwood M. A treatise on diseases of children with general directions for the management of infants from the birth. Mathews, London. 1789.

3. Badham J. Paralysis in childhood; four remarkable cases of suddenly induced paralysis in the extremities, occurring in children, without any apparent cerebral or cerebro-spinal lesion. London Medical Gazette. 1835.

4. Heine J. Beobachtungen über Lähmungszustände der unteren Extremitäten und deren Behandlung. 1840.

5. Cornil V. Paralysie infantile; cancer les seins; autopsie; altérations de la moelle épinière, des nerfs et des muscles; géneéralisation du cancer. C R Soc Biol. Paris. 1863; 5:187.

6. Jacobi M. Pathogeny of infantile paralysis. Am. J. Obstet. 1875; 7: 1.

7. Putnam JJ, Taylor EW. Is acute poliomyelitis unusually prevalent this season. Bost. Med. Surg. J. 1893; 129: 509–519.

8. Flexner S, Clark PF. A note on the mode of infection in epidemic poliomyelitis. Proc. Soc. Exp. Biol. Med. 1912; 10: 1.

9. Frost WH. Epidemiologic studies of acute anterior poliomyelitis. Hyg. Lab. Bull. 1913; 90.

10. Landsteiner K., Popper E. Übertragung der Poliomyelitis acuta auf Affen. Zeitschrift für Immunitätsforshung 1909; 2: 377–390.

11. Flexner S, Lewis PA. The transmission of poliomyelitis to monkeys. J. Am. Med. Assoc. 1909; 53:1639.

12. Flexner S, Lewis PA. Experimental poliomyelitis in monkeys; active immunization and passive serum protection. J. Am. Med. Assoc. 1910; 54:1780.

13. Burnet FM., Macnamara J. Immunological differences between strains of poliomyelitic virus. Br. J. Exp. Pathol. 1931; 12: 57–61.

14. Bodian D, Morgan IM. et al. Differentiation of types ofpoliomyelitis viruses. III. The grouping of fourteen strains into three basic immunologic types. Am. J. Hyg. 1949; 49: 234–245.

15. Kessel JF, Pait CF. Differentiation of three groups of poliomyelitis virus. Proc. Soc. Exp. Biol. Med. 1949; 70: 315–316.

16. Pallansch MA, Oberste MS et al. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. Fields virology. Lippincott Williams & Wilkins, Philadelphia, PA. 2013; 1: 490–530.

17. Kramer SD, Aycock WL et al. Convalescent serum therapy in preparalytic poliomyelitis. N. Engl. J. Med. 1932; 206: 432.

18. Brodie M. Active immunization in monkeys against poliomyelitis with germicidally inactivated. J. Am. Med. Assoc. 1934; 105: 9.

19. Brodie M, Park WH. Active immunization against poliomyelitis. J. Am. Med. Assoc. 1935; 105: 9.

20. Leake JP. Poliomyelitis following vaccination against the disease. J. Am. Med. Assoc. 1935; 105: 2152

21. Enders JF, Weller TH et al. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissue. Science. 1949; 109: 85–87.

22. Hammon WM, Coriell LI et al. Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. J. Am. Med. Assoc. 1952; 150: 139.

23. Enders JF, Weller TH et al. Alterations in pathogenicity for monkeys of Brunhilde strain of poliovirus following cultivation in human tissues. Fed. Proc. 1952; 11: 467.

24. Koprowski H, Jervis GA et al. Immune responses in human volunteers upon oral administration of a rodent-adapted strain of poliomyelitis virus. Am. J. Hyg. 1952; 55: 108–126.

25. Koprowski H. Vaccination with modified active viruses. Poliomyelitis. In: Papers and discussion presented at the fourth international poliomyelitis conference. J. B. Lippincott, Philadelphia, PA. 1958.

26. Sabin AB. Current status of research on vaccination against poliomyelitis. J. Mich. State. Med. Soc. 1954a; 53 (9): 985.

27. Sabin AB. On the trail of avirulent viruses for immunization against poliomyelitis. Bibl. Paediatr. 1954; 58: 429–436.

28. Sabin AB. Behavior of chimpanzee avirulent poliomyelitis viruses in experimentally infected human volunteers. Am. J. Med. Sci. 1955; 230 (1): 1–8.

29. Sabin AB. Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann. NY Acad. Sci. 1955; 61 (4): 924–938.

30. Chumakov MP. The effect of mass peroral immunization by live vaccines from Sabin strains on the epidemiological process of poliomyelitis. J. Hyg. Epidemiol. Micro-biol. Immunol. 1960; 4: 287–288.

31. Sabin AB. Poliomyelitis incidence in the Soviet Union in 1960. JAMA. 1961; 176: 231–232.

32. Nathanson N, Langmuir AD. The cutter incident. Poliomyelitis following formaldehydeinactivated poliovirus vaccination in the United States in the spring of 1955. I. Background. Am. J. Hyg. 1963; 78: 16–28.

33. Nathanson N, Langmuir AD. The Cutter incident. Poliomyelitis following formaldehydeinactivated poliovirus vaccination in the United States in the spring of 1955. II. Relationship of poliomyelitis to Cutter vaccine. Am. J. Hyg. 1963; 78: 29–60.

34. Nathanson N, Langmuir AD. The Cutter incident. Poliomyelitis following formaldehyde inactivated poliovirus vaccination in the United States in the spring of 1955. III. Comparison of the clinical character of vaccinated and contact cases occurring after use of high rate lots of Cutter vaccine. Am. J. Hyg. 1963; 78: 61–81.

35. Offit PA. The Cutter incident: how America’s first polio vaccine led to the growing vaccine crisis. Yale University Press, New Haven. 2005.

36. Chang T-W, Weinstein L et al. Paralytic poliomyelitis in a child with hypogammaglobulinemia: probable implication of type 1 vaccine strain. Pediatrics. 1966; 37: 630–636.

37. Feigin RD, Guggenheim MA et al. Vaccine-related paralytic poliomyelitis in an immunodeficient child. J. Pediatr. 1971: 79 (4): 642–647.

38. Wright PF, Hatch MH et al. Vaccine-associated poliomyelitis in a child with sex-linked agammaglobulinemia. J Pediatr 1977; 91: 408–412.

39. Nottay B. K., Kew O. M. et al. Molecular variation of type 1 vaccine-related and wild polioviruses during replication in humans. Virology. 1981; 108: 405–423.

40. Alexander LN, Seward JF et al. Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA. 2004; 292 (14): 1696–1701.

41. Kew O, Morris-Glasgow V et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science. 2002; 296: 356–359.

42. Centers for Disease Control and Prevention Circulation of a type 2 vaccine-derived poliovirus – Egypt, 1982–1993. MMWR. 2001; 50: 41–42.

43. Kew OM, Wright PF et al. Circulating vaccine-derived polioviruses: current state of knowledge. Bull. World Health Organ. 2004; 82: 16–23.

44. Centers for Disease Control and Prevention. Update on vaccine-derived polioviruses–worldwide, April 2011–June 2012. MMWR. 2012; 61: 741–746.

45. Burns CC, Shaw J et al. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. J. Virol. 2013; 87 (9): 4907–4922.

46. Korotkova EA, Park R et al. Retrospective analysis of a local cessation of vaccination against poliomyelitis: a possible scenario for the future. J. Virol. 2003; 77: 12460–12465.

47. Lopez C, Biggar WD et al. Nonparalytic poliovirus infections in patients with severe combined immunodeficiency disease. J. Pediatr. 1974; 84 (4): 497–502.

48. Davis LE, Bodian D et al. Chronic progressive poliomyelitis secondary to vaccination of an immunodeficient child. N. Engl. J. Med. 1977; 297 (5): 241–245.

49. Minor P. Characteristics of poliovirus strains from longterm excretors with primary immunodeficiencies. Dev. Biol. 2001; 105: 75–80.

50. Martín J, Odoom K et al. Long-term excretion of vaccinederived poliovirus by a healthy child. J. Virol. 2004; 78: 13839–13847.

51. Hidalgo S, Garcia Erro M et al. Paralytic poliomyelitis caused by a vaccine-derived poliovirus in an antibody-deficient Argentinean child. Pediatr. Infect. Dis. J. 2003; 22 (6): 570–572.

52. Minor P. Vaccine-derived poliovirus (VDPV): impact on poliomyelitis eradication. Vaccine 2009; 27 (20): 2649–2652.

53. Blomqvist S, Savolainen C et al. Characterization of a highly evolved vaccine-derived poliovirus type 3 isolated from sewage in Estonia. J. Virol. 2004; 78 (9): 4876– 4883.

54. Cernáková B, Sobotová Z et al. Isolation of vaccine-derived polioviruses in the Slovak Republic. Eur. J. Clin. Microbiol. Infect. Dis. 2005; 24: 438–439.

55. Centers for Disease Control and Prevention. Update on vaccine-derived polioviruses–worldwide, January 2008–June 2009. MMWR. 2009; 58 (36): 1002–1006.

56. Roivainen M, Blomqvist S et al. Highly divergent neurovirulent vaccine-derived polioviruses of all three serotypes are recurrently detected in Finnish sewage. Euro surveill. 2010; 15 (19): pii/19566.

57. van Wezel AL, van Steenis G et al. Inactivated poliovirus vaccine: current production methods and new developments. Rev. Infect. Dis. 1984; 6 (Suppl 2): S335–S340.

58. Blume SS. Lock in, the state and vaccine development: lessons from the history of the poliovaccines. Res. Policy 2005; 34: 159–173.

59. Sabin AB. Oral poliovirus vaccine. History of its development and prospects for eradication of poliomyelitis. JAMA. 1965; 194 (8): 872–876.

60. Hampton L. Albert Sabin and the coalition to eliminate polio from the Americas. Am. J. Public Health 2009; 99 (1): 34–44.

61. de Quadros CA, Andrus JK et al. Polio eradication from the Western Hemisphere. Annu Rev. Public Health 1992; 13: 239–252.

62. de Quadros CA, Hersh BS et al. Eradication of wild poliovirus from the Americas: acute flaccid paralysis surveillance, 1988-1995. J. Infect. Dis. 1997; 175 (Suppl 1): S37–S42.

63. Andrus JK, de Quadros C et al. Screening of cases of acute flaccid paralysis for poliomyelitis eradication: ways to improve specificity. Bull. World Health Organ. 1992; 70: 591–596.

64. Kew OM, Nottay BK et al. Molecular epidemiology of wild poliovirus transmission. Plenum, New York, NY, 1990; 21: 199–221.

65. Chumakov K, Kew OM. The poliovirus eradication initiative. The picornaviruses. ASMscience, Washington, DC. 2010: 449–459.

66. WHO. Polio Eradication & Endgame Strategic Plan. 2013; 2013–2018.

67. Patriarca PA, Wright PF et al. Factors affecting the immunogenicity of oral poliovirus vaccine in developing countries: review. Rev. Infect. Dis. 1991; 13: 926–939.

68. Grassly NC, Fraser C et al. New strategies for the elimination of polio from India. Science. 2006; 314: 1150–1153.

69. Grassly NC, Wenger J et al. Protective efficacy of a monovalent oral type 1 poliovirus vaccine: a case-control. Lancet. 2007; 369 (9570): 1356–1362.

70. O’Reilly KM, Durry E et al. The effect of mass immunization campaigns and new oral poliovirus vaccines on the incidence of poliomyelitis in Pakistan and Afghanistan, 2001-11: a retrospective analysis. 2012: 380 (9840):491–498.

71. Nasr El-Sayed N, El-Gamal Y et al. Randomized controlled clinical trial of monovalent type1 oral poliovirus vaccine. N. Engl. J. Med. 2008; 359: 1655–1665.

72. John TJ, Jain H et al. Monovalent type 1 oral poliovirus vaccine among infants in India: report of two randomized double-blind controlled clinical trials. Vaccine. 2011; 29 (34): 5793–5801.

73. John TJ, Vashishtha VM. Path to polio eradication in India: a major milestone. Indian Pediatr. 2012; 49 (2): 95–98.

74. Kaura G, Biswas T. India reaches milestone of no cases of wild poliovirus for 12 months. BMJ. 2012; 344: e1328.

75. Agol VI. Vaccine-derived polioviruses. Biologicals. 2006; 34 (2):103–108.

76. Dowdle W, Kew O. Vaccine-derived polioviruses: is it time to stop using the word rare»? J. Infect. Dis. 2006; 194: 539–541.

77. Dowdle WR, de Gourville E et al. Polio eradication: the OPV paradox. Rev. Med. Virol. 2003; 13: 277–291.

78. Jorba J, Campagnoli R et al. Calibration of multiple poliovirus molecular clocks covering an extended evolutionary range. J. Virol. 2008; 82 (9): 4429–4440.

79. Arita I, Francis DP. Safe landing for global polio eradication: a perspective. Vaccine; 2011: 29.

80. Arya SC, Agarwal N. Bivalent live poliovirus vaccine: a blessing or a curse. Hum Vaccinе. 2011; 7 (7): 800.

81. Agol VI, Chumakov K et al. Don’t drop current vaccine until we have new ones. Nature. 2005; 435 (7044).

82. Chumakov K, Ehrenfeld E et al. Vaccination against polio should not be stopped. Nat. Rev. 2007: 100.

83. Ehrenfeld E., Glass R. I. et al. Immunisation against poliomyelitis: moving forward. Lancet 2008; 371 (9621): 1385–1387.

84. Cello J, Paul AV et al. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 2002; 297: 1016–1018.

85. Dowdle WR, Birmingham ME. The biologic principles of poliovirus eradication. J. Infect. Dis. 1997; 175 (Suppl 1): S286–S292.

86. Dowdle WR. The principles of disease elimination and eradication. Bull. World Health Organ. 1998; 76 (Suppl 2): 22–25.

87. Anis E, Kopel E et al. Insidious reintroduction of wild poliovirus into Israel, 2013. Euro Surveill. 2013; 18 (38):1–5.

88. Ehrenfeld E, Modlin J et al. Future of polio vaccines. Expert. Rev. Vaccines. 2009; 8 (7): 899–905.

89. Guest S, Pilipenko E et al. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. J. Virol. 2004; 78 (20): 11097–11107.

90. Kauder SE, Racaniello VR. Poliovirus tropism and attenuation are determined after internal ribosome entry. J. Clin. Investig. 2004; 113 (12): 1743–1753.

91. Gromeier M, Alexander L et al. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Na.t Acad. Sci. USA 1996; 93: 2370–2375.

92. Chumakov K, Dragunsky E et al. Inactivated vaccines based on alternatives to wild-type seed virus. Dev. Biol. (Basel) 2001; 105: 171–177.

93. Dobrikova EY, Goetz C et al. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus: rhinovirus chimera after intrathalamic inoculation in Ma-caca fascicularis. J. Virol. 2012; 86 (5): 2750–2759.

94. Macadam AJ, Ferguson G et al. Live-attenuated strains of improved genetic stability. Dev Biol. 2001; 105: 179–187.

95. Macadam AJ, Ferguson G et al. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication. J. Virol. 2006; 80 (17): 8653–8663.

96. Rowe A, Burlison J et al. Functional formation of domain V of the poliovirus noncoding region: significance of unpaired bases. Virology. 2001; 289 (1): 45–53.

97. Toyoda H, Yin J et al. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. 2007; 67 (6): 2857–2864.

98. Pfeiffer JK, Kirkegaard K. A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc. Natl. Acad. Sci. USA. 2003; 100 (12): 7289–7294.

99. Vignuzzi M, Stone JK et al. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006; 439 (7074): 344–348.

100. Vignuzzi M, Wendt E et al. Engineering attenuated virus vaccines by controlling replication fidelity. Nat. Med. 2008; 14 (2): 154–161.

101. Burns CC, Shaw J et al. Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J. Virol. 2006; 80 (7): 3259–3272.

102. Gutman GA, Hatfield GW. Nonrandom utilization of codon pairs in Escherichia coli. Proc. Natl. Acad. Sci. USA 1989; 86 (10): 3699–3703.

103. Coleman JR, Papamichail D et al. Virus attenuation by genome-scale changes in codon pair bias. Science. 2008; 320 (5884): 1784–1787.

104. Burns CC, Campagnoli R et al. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J. Virol. 2009; 83 (19): 9957–9969.

105. Mueller S, Coleman JR et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechnol. 2010; 28 (7): 723–726.

106. Cooper PD. Genetics of picornaviruses. Comprehensive virolog. Plenum, New York, NY. 1977; 9: 133–207.

107. Furione M, Guillot S et al. Polioviruses with natural recombinant genomes isolated from vaccine-associated poliomyelitis. Virology. 1993; 196: 199–208.

108. Agol VI. Recombination and other genomic rearrangements in picornaviruses. Semin. Virol. 1997; 8: 77–84.

109. Combelas N, Holmblat B et al. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses. 2011; 3 (8):1460–1484.

110. Runckel C, Westesson O et al. Identification and manipulation of the molecular determinants influencing poliovirus recombination. PLoS Pathog. 2013; 9 (2): e1003164.

111. Doi Y, Abe S et al. Progress with inactivated poliovirus vaccines derived from the Sabin strains. Dev. Biol. 2001; 105: 163–169.

112. Dragunsky EM, Ivanov AP et al. Evaluation of immunogenicity and protective properties of inactivated poliovirus vaccines: a new surrogate method for predicting vaccine efficacy. J. Infect. Dis. 2004; 190 (8): 1404–1412.

113. Dragunsky EM, Ivanov AP et al. Further development of a new transgenic mouse test for the evaluation of the immunogenicity and protective properties of inactivated poliovirus vaccine. J. Infect. Dis. 2006; 194 (6): 804–807.

114. Tano Y, Shimizu H et al. Antigenic characterization of a formalin-inactivated poliovirus vaccine derived from liveattenuated Sabin strains. Vaccine. 2007; 25 (41): 7041–7046.

115. Westdijk J, Brugmans D et al. Characterization and standardization of Sabin based inactivated polio vaccine: proposal for a new antigen unit for inactivated polio vaccines. Vaccine 2011; 29 (18): 3390–3397.

116. Shimizu H. Poliovirus vaccine. Uirusu. 2012; 62 (1): 57–65.

117. Verdijk P, Rots NY et al. Clinical development of a novel inactivated poliomyelitis vaccine based on attenuated Sabin poliovirus strains. Expert. Rev. Vaccines. 2011; 10 (5): 635–644.

118. World Health Organization. Global action plan for laboratory containment of wild polioviruses, 3rd edn. WHO. Geneva. 2004.

119. Porta C, Kotecha A et al. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen. PLoS Pathog. 2013; 9 (3): e1003255.

120. Sanders BP, Edo-Matas D et al. PER.C6. (R) cells as a serumfree suspension cell platform for the production of high titer poliovirus: a potential low cost of goods option for world supply of inactivated. Vaccine. 2013; 31 (5): 850–856.

121. Verdijk P, Rots NY et al. Safety and immunogenicity of inactivated poliovirus vaccine based on Sabin strains with and without aluminum hydroxide: a phase I trial in healthy adults. Vaccine. 2013; 31 (47): 5531–5536.

122. Westdijk J, Koedam P et al. Antigen sparing with adjuvanted inactivated polio vaccine based on Sabin strains. Vaccine. 2013; 31 (9): 1298–1304.

123. Baldwin SL, Fox CB et al. Increased potency of an inactivated trivalent polio vaccine with oil-in-water emulsions. Vaccine 2011; 29 (4): 644–649.

124. Ivanov AP, Dragunsky EM et al. 1,25-dihydroxyvitamin d3 enhances systemic and mucosalimmune responses to inactivated poliovirus vaccine in mice. J. Infect. Dis. 2006; 193 (4): 598–600.

125. Resik S, Tejeda A et al. Randomized controlled clinical trial of fractional doses of inactivated poliovirus vaccine administered intradermally by needle-free device in Cuba. J Infect Dis 2010; 201 (9): 1344–1352.

126. Cadorna-Carlos J, Vidor E et al. Randomized controlled study of fractional doses of inactivated poliovirus vaccine administered intradermally with a needle in the Philippines. Int. J. Infect. Dis. 2012; 16 (2): e110–e116.

127. Nelson KS, Janssen JM et al. Intradermal fractional dose inactivated polio vaccine: a review of the literature. Vaccine. 2012; 30 (2): 121–125.

128. Soonawala D, Verdijk P et al. Intradermal fractional booster dose of inactivated poliomyelitis vaccine with a jet injector in healthy adults. Vaccine. 2013; 31 (36): 3688–3694.

129. Resik S, Tejeda A et al. Priming after a fractional dose of inactivated poliovirus vaccine. N. Engl. J. Med. 2013; 368 (5): 416–424

130. Hiraishi Y, Nandakumar S et al. Bacillus Calmette-Guerin vaccination using a microneedle patch. Vaccine. 2011; 29 (14): 2626–2636.

131. del Pilar Martin M., Weldon W. C. et al. Local response to microneedle-based influenza immunization in the skin. MBio. 2012; 3 (2): e00012–12.

132. Kim YC, Song JM et al. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur. J. Pharm. Biopharm. 2012; 81 (2): 239–247.

133. Edens C, Collins ML et al. Measles vaccination using a microneedle patch. Vaccine. 2013; 31 (34): 3403–3409.

134. Collett MS, Neyts J et al. A case for developing antiviral drugs against polio. Antiviral Res. 2008;;79 (3): 179–87.

135. Chen Z, Chumakov K et al. Chimpanzee-human monoclonal antibodies for treatment of chronic poliovirus excretors and emergency postexposure prophylaxis. J. Virol. 2011; 85 (9): 4354–4362.

136. Chen Z, Fischer ER et al. Cross-neutralizing human antipoliovirus antibodies bind the recognition site for cellular receptor. Proc. Natl. Acad. Sci. USA. 2013; 110 (50): 20242–20247.


Для цитирования:


Чумаков К.М., Ишмухаметов А.А. Вакцины против полиомиелита: настоящее и будущее. Эпидемиология и Вакцинопрофилактика. 2018;17(3):4-18. https://doi.org/10.31631/2073-3046-2018-17-3-4-18

For citation:


Chumakov K., Ishmukhametov A.A. Polio Vaccines: Present and Future. Epidemiology and Vaccinal Prevention. 2018;17(3):4-18. (In Russ.) https://doi.org/10.31631/2073-3046-2018-17-3-4-18

Просмотров: 169


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2073-3046 (Print)
ISSN 2619-0494 (Online)